A Theoretical Survey of Unsaturated or Multiply Bonded and Divalent Silicon Compounds. Comparison with Carbon

 Analogues

 Analogues}

Brian T. Luke, ${ }^{\text {la }}$ John A. Pople, ${ }^{\text {1a }}$ Mary-Beth Krogh-Jespersen, ${ }^{\text {1b }}$ Yitzhak Apeloig, ${ }^{\text {lc }}$ Miriam Karni, ${ }^{\text {c }}$ Jayaraman Chandrasekhar, ${ }^{1 \mathrm{~d}}$ and Paul von Ragué Schleyer*1d
Contribution from the Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, Department of Chemistry, Pace University, New York, New York 10038, Department of Chemistry, Technion-Israel Institute of Technology, 32000 Haifa, Israel, and Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany. Received July 5, 1984

Abstract

Multiply bonded Si molecules, $\mathrm{H}_{2} \mathrm{SiX}\left(\mathrm{X}=\mathrm{Be}, \mathrm{BH}, \mathrm{CH}_{2}, \mathrm{SiH}_{2}, \mathrm{NH}, \mathrm{O}\right), \mathrm{HSiY}(\mathrm{Y}=\mathrm{B}, \mathrm{CH}, \mathrm{SiH}, \mathrm{N})$, and SiZ ($\mathrm{Z}=\mathrm{O}, \mathrm{O}_{2}$), along with their carbon analogues, have been investigated by ab initio methods. All structural parameters were optimized by use of the 3-21G basis set and the higher $3-21 \mathrm{G}^{(*)}$ basis set for silicon. In addition, the isomeric substituted silylenes which result from 1,2-hydrogen shifts were also considered. In many cases, the substituted silylene structures were energetically favored. The effect of all first-row substituents on the singlet-triplet energy separation of divalent silicon molecules was assessed and compared with the corresponding carbenes.

Though many molecules involving silicon singly bonded to firstand second-row elements are known, ${ }^{2}$ multiply bonded silicon analogues of carbon compounds, until recently, were experimentally elusive. Transient $\mathrm{Si}=\mathrm{C}$ intermediates were first inferred in 1971. ${ }^{3}$ Developments have culminated in the recent isolation of molecules containing both $\mathrm{Si}=\mathrm{C}^{4}$ and $\mathrm{Si}=\mathrm{Si}$ double bonds. ${ }^{5}$ In addition, $\mathrm{Me}_{2} \mathrm{Si}=0$ was postulated from the pyrolysis of octamethylcyclotetrasilanone. ${ }^{6} \quad \mathrm{H}_{2} \mathrm{Si}=\mathrm{O}$ was inferred by product analysis to be a reactive intermediate, ${ }^{7}$ both SiO and SiO_{2} have a significant literature, ${ }^{8}$ and SiN was reported to exist in the outer atmosphere.9 Although these species are unstable, their existence increases interest in other presently unknown multiply bonded silicon molecules. In addition, the reactive nature of the known species makes it difficult to obtain quantitative data, e.g., energies and geometries, experimentally. It is now more practical to carry out systematic studies calculationally. To gain insight into the extent of double and triple bonds in compounds of silicon with elements of the first row, we have undertaken a theoretical investigation of an entire set of $\mathrm{H}_{2} \mathrm{SiX}\left(\mathrm{X}=\mathrm{Be}, \mathrm{BH}, \mathrm{CH}_{2}, \mathrm{SiH}_{2}\right.$,

[^0]$\mathrm{NH}, \mathrm{O}), \mathrm{HSiY}(\mathrm{Y}=\mathrm{B}, \mathrm{CH}, \mathrm{SiH}, \mathrm{N})$, and $\mathrm{SiZ}\left(\mathrm{Z}=\mathrm{O}, \mathrm{O}_{2}\right)$ molecules. Many of these species are presently unknown, but appear to offer good prospects for experimental realization.

In each case, the silicon molecules are compared with the analogous multiply bonded carbon compounds. In addition, the alternative isomers with divalent atoms are considered. While in carbon compounds the classical, tetravalent unsaturated structures (e.g., ethylene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$) are generally much more stable than the divalent isomers (e.g., methylcarbene, $\mathrm{CH}_{3} \mathrm{CH}$) ${ }^{10}$ the situation in unsaturated silicon compounds is different. ${ }^{11,12}$ The importance of 1,2 -hydrogen shifted forms ${ }^{11}$ is shown by recent predictions that methylsilylene, $\mathrm{CH}_{3} \mathrm{SiH}$, is similar in energy to silaethylene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{SiH}_{2} .{ }^{12}$ The parent silylene, SiH_{2}, is presented in the companion paper. ${ }^{2}$ We consider here the entire first-row set of substituted silylenes, $\mathrm{HSiX}\left(\mathrm{X}=\mathrm{Li}, \mathrm{BeH}, \mathrm{BH}_{2}, \mathrm{CH}_{3}, \mathrm{NH}_{2}\right.$, OH, F, as well as SiH_{3}), along with the corresponding carbenes, XCH . The effects of substituents on the triplet-singlet splittings are analyzed.

The companion study dealt with the singlet states of saturated silicon and carbon molecules, $\mathrm{SiH}_{3} \mathrm{X}$ and $\mathrm{CH}_{3} \mathrm{X} .{ }^{2}$ However, in unsaturated systems the lowest energy states may be either triplets or singlets. Hence, we examine here low-lying minima on the potential energy surface of both singlet and triplet states. Since our purpose is to compare the structural differences of unsaturated silicon and carbon molecules, only equilibrium structures will be discussed. The energy barriers either to internal rotation or to 1,2 -hydrogen shifts in the silicon molecules are not considered here, the barriers to 1,2 -hydrogen shifts for many of the carbon species have already been examined at a higher level of theory. ${ }^{13}$

Computational Methods

All molecular geometries were fully optimized with both the $3-21 \mathrm{G}^{14}$ and $3-21 \mathrm{G}^{(*) 15}$ basis sets. The latter includes a set of six Gaussian d-functions on the silicon. Singlet spin states were calculated by using closed-shell spin-restricted Hartree-Fock theory (RHF), ${ }^{16}$ while states

[^1]Table I. HF/3-21G, HF/3-21G*, and MP4SDTQ/6-31G* Energies for All Silicon Compounds (in Hartrees)

molecule	sym	state	HF/3-21G	ZPE	HF/3-21G*	MP4SDTQ/6-31G*	RE ${ }^{\text {a }}$
$\mathrm{HSiLi}^{\text {i }}$	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-295.34359	4.1	-295.40314	-296.97208	0.0
HSiLi	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	-295.306 52	3.9	-295.36786	-296.956 32	9.7
HSiBeH	$C_{s}(3){ }^{\text {b }}$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-303.05157	9.4	-303.11508	-304.764 17	0.0
HSiBeH	$C_{s}(3)$	${ }^{1} \mathrm{~A}^{\prime}$	-303.025 54	9.0	-303.09335	-304.749 15	9.0
$\mathrm{H}_{2} \mathrm{SiBe}$	$C_{2 v}$	${ }^{3} \mathrm{~B}_{1}$	-303.026 03	9.6	-303.10037	-304.734 13	19.0
$\mathrm{H}_{2} \mathrm{SiBe}$	$C_{s}(4)$	${ }^{1} \mathrm{~A}^{\prime}$	-302.98155	9.1	-303.058 33	-304.72980	21.2
HSiBH_{2}	$C_{s}(8)$	${ }^{1} \mathrm{~A}^{\prime}$	-313.59031	16.7	-313.663 34	-315.42430	0.0
HSiBH_{2}	$C_{s}(9)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-313.59810	17.1	-313.668 23	-315.41180	8.8
$\mathrm{H}_{2} \mathrm{SiBH}$	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	-313.56074	16.9	-313.642 58	-315.40455	12.8
$\mathrm{H}_{3} \mathrm{SiB}$	$C_{3 c}$	${ }^{1} \mathrm{~A}_{1}$	-313.51514	15.7	-313.60771	-315.35556	42.0
HBSi	$C_{\text {cob }}$	${ }^{3} \Sigma^{-}$	-312.425 27	7.1	-312.49279	-314.27135	0.0
HBSi	C_{∞}	${ }^{1} \Delta$	-312.38237	7.3	-312.44702	-314.18899	51.7
HSiB	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	-312.28408	4.2	(c)	(c)	
HSiB	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-312.35873	4.6	-312.43607	-314.15458	70.5
$\mathrm{H}_{2} \mathrm{CSiH}_{2}$	$C_{2 c}$	${ }^{1} \mathrm{~A}_{1}$	-327.30167	26.8	-327.39211	-329.28639	0.0
$\mathrm{H}_{3} \mathrm{CSiH}$	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	-327.325 46	28.2	-327.39861	-329.28508	2.2
$\mathrm{H}_{3} \mathrm{CSiH}$	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-327.31546	28.7	-327.38715	-329.254 20	22.0
$\mathrm{H}_{2} \mathrm{CSiH}_{2}$	$C_{s}(10)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-327.28837	25.0	-327.37620	-329.229 69	33.7
$\mathrm{H}_{3} \mathrm{SiCH}$	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-327.27095	22.8	-327.37255	-329.20774	45.2
$\mathrm{H}_{3} \mathrm{SiCH}$	C_{1}	${ }^{1} \mathrm{~A}$	-327.20171	22.8	-327.30219	-329.16684	71.0
$\mathrm{H}_{2} \mathrm{SiSiH}_{2}{ }^{\text {d }}$	$C_{2 h}, D_{2 h}$	${ }^{1} \mathrm{~A}_{8}$	-577.038 61	20.3	-577.20362	-580.279 10	0.0
$\mathrm{H}_{3} \mathrm{SiSiH}$	$C_{s}(14)$	${ }^{1} \mathrm{~A}^{\prime}$	-577.038 72	19.8	-577.20378	-580.268 24	6.2
$\mathrm{H}_{3} \mathrm{SiSiH}$	$C_{s}(14)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-577.044 78	20.4	-577.209 06	-580.25291	16.5
$\mathrm{H}_{2} \mathrm{SiSiH}_{2}$	$C_{2}(13)$	${ }^{3} \mathrm{~B}$	-577.03585	19.7	-577.20136	-580.24678	19.6
$\mathrm{H}_{2} \mathrm{CSi}$	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	-326.14318	15.1	-326.21317	-328.089 39	0.0
$\mathrm{H}_{2} \mathrm{CSi}$	C_{20}	${ }^{3} \mathrm{~A}_{2}$	-326.12797	14.7	-326.19272	-328.03196	35.6
HCSiH	$C_{s}{ }^{\text {e }}$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-326.081 04	11.5	-326.159 99	-327.98591	61.1
$\mathrm{H}_{2} \mathrm{CSi}$	$C_{2 v}$	${ }^{3} \mathrm{~B}_{2}$	-326.098 11	15.6	-326.15975	-327.98729	64.5
HCSiH	C_{s}^{f}	${ }^{3} \mathrm{~A}^{\prime}$	-326.05798	12.1	-326.13854	-327.96579	74.3
$\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$	$C_{2 v}(16)$	${ }^{1} \mathrm{~A}_{1}$	-575.848 27	8.4	-576.01290	-579.08254	0.0
HSiSiH	$C_{2}(15)$	${ }^{1} \mathrm{~A}$	-575.84898	8.1	(g)	(g)	
$\mathrm{H}_{2} \mathrm{SiSi}$	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	-575.864 19	9.6	-576.009 87	-579.069 83	9.1
$\mathrm{H}_{2} \mathrm{SiSi}$	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-575.87577	9.4	-576.02186	-579.05327	19.3
HSiNH_{2}	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	-343.28159	22.5	-343.36095	-345.35715	0.0
$\mathrm{H}_{2} \mathrm{SiNH}$	$C_{20}{ }^{\text {a }}$	${ }^{1} \mathbf{A}_{1}$	-343.21121	$19.9{ }^{\text {i }}$	-343.32030	-345.32007	20.6
HSiNH_{2}	$C_{s}(19)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-343.23896	21.8	-343.31893	-345.29156	40.3
$\mathrm{H}_{2} \mathrm{SiNH}$	$C_{s}(20)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-343.19879	17.9	-343.29669	-345.25961	56.4
$\mathrm{H}_{3} \mathrm{SiN}$	$C_{3 c}$	${ }^{3} \mathrm{~A}_{1}$	-343.21810	16.9	-343.31997	-345.25798	56.4
$\mathrm{H}_{2} \mathrm{SiNH}$	$C_{s}(21)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-343.19879	17.7	-343.39278	-345.25461	99.9
HNSi	$C_{\text {civ }}$	${ }^{1} \Sigma^{+}$	-342.10970	9.6	-342.19455	-344.189 31	0.0
HSiN	C_{∞}	${ }^{1} \Sigma^{+}$	-341.963 32	5.8	-342.05015	-344.095 27	55.0
HNSi	C_{s}	${ }^{3} \mathrm{~A}^{\prime}$	-342.03863	7.2	-342.10897	-344.05191	83.5
HSiN	C_{s}	${ }^{3} \mathrm{~A}^{\prime}$	-341.96206	5.2	-342.03788	-343.95126	144.5
$\mathrm{H}_{2} \mathrm{SiO}$	C_{20}	${ }^{1} \mathrm{~A}_{1}$	-362.95589	12.3	-363.07658	-365.204 11	0.0
HSiOH	$C_{s}{ }^{e}$	${ }^{1} \mathrm{~A}^{\prime}$	-362.99768	13.6	-363.084 07	-365.19883	4.6
HSiOH	C_{s}^{f}	${ }^{1} \mathrm{~A}^{\prime}$	-362.99741	13.3	-363.084 68	-365.19763	5.1
HSiOH	$C_{1}(24)$	${ }^{3} \mathrm{~A}$	-362.95772	13.2	-363.044 94	-365.13736	42.6
$\mathrm{H}_{2} \mathrm{SiO}$	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-362.93666	10.9	-363.044 23	-365.091 05	69.3
SiO	$C^{\text {cic }}$	${ }^{1} \Sigma^{+}$	-361.84586	1.1	-361.94212	-364.065 73	0.0
SiO	$C_{\infty 0}$	${ }^{3} \Sigma^{+}$	-361.78614	1.2	-361.859 67	-363.907 75	98.9
SiO	$C_{\text {co }}$	${ }^{3} \mathrm{II}$	-361.73834	1.2	-361.1588	-363.89063	109.6
OSiO	$C_{\infty 0}$	${ }^{1} \Sigma^{+}$	-436.228 15	3.8	-436.37384	-439.09619	0.0
$\mathrm{Si}\left(\mathrm{O}_{2}\right)$	C_{20}	${ }^{1} \mathrm{~A}_{1}$	-436.21200	3.8	-436.31360	-439.01368	51.5
SiOO	$C_{\infty 0}$	${ }^{1} \Sigma^{+}$	-436.14856	2.8	-436.24193	-438.91172	114.4
HSiF	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	-386.881 66	5.6	-386.97564	-389.19669	0.0
HSiF	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-386.843 56	5.7	-386.93739	-389.13663	37.8

${ }^{a}$ The relative energy (in kcal mol) is determined by differencing the MP4SDTQ/6-31G* energies and then adding in the differences in the ZPE (obtained from a FREQ/3-12G//HF/3-21G calculation) of the structures. ${ }^{b}$ The numbers in parentheses refer to figure numbers in the text. ${ }^{c}$ Using the $3-21 \mathrm{G}^{(*)}$ basis, this structure went to ${ }^{1} \Delta \mathrm{HBSi}$. ${ }^{d} \mathrm{At} \mathrm{HF} / 3$-21G, the equilibrium structure was trans-nonplanar (11) while at $\mathrm{HF} / 3-21 \mathrm{G}^{(*)}$ it was planar (12). ${ }^{e}$ Trans-planar geometry. ${ }^{f}$ Cis-planar geometry. ${ }^{8} \mathrm{At} \mathrm{HF} / 3-21 \mathrm{G}^{(*)}$, this went to $\mathrm{Si}\left(\mathrm{H}_{2}\right)$ Si structure ${ }^{16}$. ${ }^{\text {h }}$ At $\mathrm{HF} / 3$-21G, this structure was C_{s} planar. ${ }^{\text {TT This }}$ is the FREQ $/ 3-21 \mathrm{G}^{(*)} / / \mathrm{HF} / 3-21 \mathrm{G}^{(*)}$ value.
of higher multiplicity used the Pople-Nesbet spin-unrestricted theory (UHF). ${ }^{17}$ Population analyses were based on the Mulliken method. ${ }^{18}$ To verify if a minimum or a saddle point on the potential surface has been reached, the 3-21G force constant matrix was constructed; only equilibrium structures (with no negative eigenvalues) are considered here. Extensive comparisons with experiment ${ }^{19}$ have shown that corresponding harmonic frequencies are generally $11-12 \%$ too large. To include d-type polarization functions on first- (as well as second-) row atoms and to
determine the relative energy of each species with electron correlation included, full fourth-order Moller-Plesset calculations ${ }^{20}$ were performed with the $6-31 \mathrm{G}^{*}$ basis set. ${ }^{21}$ For silicon molecules, these calculations are denoted MP4SDTQ/6-31G*//HF/3-21G(*), where '//' means 'at the geometry of'. For the carbon analogues, the corresponding calculations are MP4SDTQ/6-31G*//HF/3-21G. The GAUSSIAN 82 program was employed. ${ }^{22}$

[^2]Table II. HF/3-21G and MP4SDTQ/6-31G* Energies for All Carbon Compounds (in Hartrees)

molecule	sym	State	HF/3-21G	ZPE	MP4DTQ/6-31G*	RE ${ }^{\text {a }}$
HCLi	$C_{\infty 0}$	${ }^{3} \Sigma^{-}$	-45.532 34	6.7	-45.897 19	0.0
HCLi	$C_{\text {ce }}$	${ }^{1} \Delta$	-45.45800	7.2	-45.84270	34.7
$\mathrm{H}_{2} \mathrm{CBe}$	$C_{2 c}(1)^{b}$	${ }^{3} \mathrm{~B}_{1}$	-53.28263	14.8	-53.72434	0.0
HCBeH	$C_{\text {si }}$	${ }^{3} \Sigma^{-}$	-53.28250	12.2	-53.71601	2.6
$\mathrm{H}_{2} \mathrm{CBe}$	$C_{2 c}$ (1)	${ }^{1} \mathrm{~A}_{1}$	-53.19986	15.0	-53.68713	23.6
HCBeH	$C_{\infty c}$	${ }^{1} \Delta$	-53.20485	12.8	-53.65738	39.9
$\mathrm{H}_{2} \mathrm{CBH}$	$C_{2 k}$ (5)	${ }^{1} \mathrm{~A}_{1}$	-63.86788	22.9	-64.44648	0.0
$\mathrm{H}_{3} \mathrm{CB}$	$C_{3 c}$	${ }^{1} \mathrm{~A}_{1}$	-63.83281	23.8	-64.405 42	26.7
HCBH_{2}	$\mathrm{C}_{2 t}$	${ }^{1} \mathrm{~A}_{1}$	-63.81104	20.7	-64.38278	37.8
HCBH_{2}	$C_{s}(7)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-63.83486	20.7	-64.37583	42.1
$\mathrm{H}_{2} \mathrm{CBH}$	$C_{s}(6)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-63.82904	22.2	-64.375 13	44.1
HCB	$C_{\text {co }}$	${ }^{3} \mathrm{II}$	-62.605 32	9.5	-63.128 40	0.0
HBC	C_{∞}	${ }^{3} \Sigma$	-62.590 81	7.3	-63.12038	2.8
HBC	C_{∞}	${ }^{3} \Pi$	-62.59825	8.1	-63.10500	13.2
HCB	$C_{\text {cob }}$	${ }^{3} \Sigma^{-}$	-62.590 31	7.9	-63.10330	14.1
HBC	$C_{\infty 0}$	${ }^{1} \Delta$	-62.53762	8.3	-63.084 35	26.4
HCB	$C_{\text {cov }}$	${ }^{1} \Delta$	-62.51400	9.1	-63.046 59	50.8
$\mathrm{H}_{2} \mathrm{CCH}_{2}$	$D_{2 h}$	${ }^{1} \mathrm{~A}_{\mathrm{g}}$	-77.600 99	34.6	78.31838	0.0
$\mathrm{H}_{2} \mathrm{CCH}_{2}$	$D_{2 d}$	${ }^{3} \mathrm{E}$ 8	-77.53160	30.0	-78.21187	62.1
$\mathrm{H}_{3} \mathrm{CCH}$	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-77.53370	31.9	-78.20775	66.7
$\mathrm{H}_{3} \mathrm{CCH}$	C_{1}	${ }^{1} \mathrm{~A}$	-77.48509	31.5	-78.19082	77.4
$\mathrm{H}_{2} \mathrm{CCH}_{2}$	$C_{s}(D)$	${ }^{1} \mathbf{A}$	-77.40183	41.2	-78.12965	125.0
HCCH	$D_{\text {ch }}$	${ }^{1} \Sigma_{8}+$	-76.39596	18.9	-77.09109	0.0
$\mathrm{H}_{2} \mathrm{CC}$	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	-76.334 50	16.6	-77.02092	41.7
HCCH	$C_{2 v}$	${ }^{3} \mathrm{~B}_{2}$	-76.28925	16.4	-76.95159	85.0
$\mathrm{H}_{2} \mathrm{CC}$	C_{20}	${ }^{3} \mathrm{~B}_{2}$	-76.31263	16.5	-76.94185	91.3
HCCH	$C_{2 h}$	${ }^{3} \mathrm{~B}_{4}$	-76.27736	16.6	-76.93698	94.4
$\mathrm{H}_{2} \mathrm{CNH}$	$C_{s}(\mathrm{~A})$	${ }^{1} \mathrm{~A}^{\prime}$	-93.49478	26.9	-94.34325	0.0
HCNH_{2}	$C_{s}(\mathrm{~A})$	${ }^{1} \mathrm{~A}^{\prime}$	-93.45252	26.7	-94.279 40	39.9
$\mathrm{H}_{3} \mathrm{CN}$	$C_{3 c}$	${ }^{3} \mathrm{~A}_{1}$	-93.48373	25.1	-94.26580	46.8
$\mathrm{H}_{2} \mathrm{CNH}$	$C_{s}(17)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-93.43514	23.6	-94.234 34	65.0
HCNH_{2}	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-93.43428	24.6	-94.225 55	71.6
$\mathrm{H}_{3} \mathrm{CN}$	$C_{s}(18)$	${ }^{1} \mathrm{~A}^{\prime}$	-93.38148	24.5	-94.19428	91.1
HCN	$C_{\text {dv }}$	${ }^{1} \Sigma^{+}$	-92.35408	11.5	-93.17693	0.0
HNC	$C_{\text {co }}$	${ }^{1} \Sigma^{+}$	-92.33971	11.0	-93.14943	16.8
HCN	C_{5}	${ }^{3} \mathrm{~A}^{\prime}$	-92.21451	8.0	-92.989 92	113.5
HNC	C_{s}	${ }^{3} \mathrm{~A}^{\prime}$	-92.20070	8.6	-92.962 44	131.7
CN	$C_{\text {co }}$	${ }^{2} \Sigma^{+}$	-91.68475	2.6	-92.458 77	0.0
CN	$C_{\text {co }}$	${ }^{2} I I$	-91.65138	2.7	-92.44072	11.4
$\mathrm{H}_{2} \mathrm{CO}$	$\mathrm{C}_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	-113.22182	18.2	-114.19069	0.0
HCOH	$C_{s}{ }^{\text {c }}$	${ }^{1} \mathrm{~A}^{\prime}$	-113.14629	17.4	-114.09715	57.9
HCOH	$C_{s}{ }^{\text {d }}$	${ }^{1} \mathrm{~A}^{\prime}$	-113.13625	17.0	-114.08894	62.7
$\mathrm{H}_{2} \mathrm{CO}$	$C_{s}(22)$	${ }^{3} \mathrm{~A}^{\prime \prime}$	-113.16642	16.0	-114.06887	74.2
HCOH	C_{1} (23)	${ }^{3} \mathrm{~A}$	-113.14372	16.1	-114.05792	81.2
CO	$C_{\Phi_{0}}$	${ }^{1} \Sigma^{+}$	-112.09330	3.3	-113.04170	0.0
CO	$C_{\text {dv }}$	${ }^{3} \Sigma^{+}$	-119.91150	1.6	-112.77807	163.2
OCO	$C_{\text {c }}$	$1 \Sigma^{+}$ $1 \Sigma^{+}$	-186.56126	7.4	-188.12806	0.0
COO	$C_{\text {civ }}$	${ }^{1} \Sigma^{+}$	-186.369 33	3.8	-187.846 36	172.6
HCF	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	-137.00206	8.2	-138.05606	0.0
HCF	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	-137.01868	8.4	-138.03588	12.9

${ }^{a}$ The relative energy (in $\mathrm{kcal} / \mathrm{mol}$) is determined by differencing the MP4SDTQ/6-31G* energies and then adding in the differences in the ZPE (obtained from a FREQ/3-21G//HF/3-21G calculation) of the structures. ${ }^{b}$ The numbers in parentheses refer to figure numbers in the text. ${ }^{c}$ Trans-planar structure. ${ }^{d}$ Cis-planar structure.

Results

The Hartree-Fock (HF/3-21G and HF/3-21G ${ }^{(*)}$) and the correlated (MP4SDTQ/6-31G*) energies for all of the silicon molecules are listed in Table I. Also included in this Table is the zero-point vibrational energy for each molecule. For each constitution, several equilibrium structures were determined; relative energies also are listed in this table. These are calculated by correcting the relative MP4SDTQ/6-31G*//HF/3-21G ${ }^{(*)}$ energies for differences in the zero-point energies. For comparison, data for the analogous carbon compounds are listed in Table II. All optimized geometries are available in the Carnegie-Mellon Quantum Chemistry Archive. ${ }^{23}$ Many of the structures were optimized originally with the minimum STO-3G basis set; ${ }^{24}$ these

[^3] ersity.
results also are listed in the Archive.
Unless otherwise noted, only the 3-21G ${ }^{(*)}$ geometrical parameters for the silicon molecules will be discussed. In most cases, only minor change in the bond lengths and angles results when d-functions are added to the basis set; exceptions will be mentioned. Since we wish to contrast carbon and silicon analgoues, a brief discussion of the low-lying equilibrium structures of the carbon molecules will precede a detailed comparison with the silicon species. Molecules containing divalent carbon and divalent silicon, and the geometries of CH_{2} and $\mathrm{SiH}_{2},{ }^{2}$ will also be compared.

HCLi and HSiLi. Lithium is not only more electropositive than hydrogen but has low-lying vacant p-orbitals, allowing for the delocalization of the nonbonding electrons on the carbon through π-bonding. Both σ and π effects result in linear equilibrium
(24) (a) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1969); (b) W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, ibid., 52, 2769 (1970); (c) W. J. Pietro, B. A. Levi, W. J. Hehre, and R. F. Stewart. Inorg. Chem., 19, 2225 (1980); (d) W. J. Pietro, E. S. Bulrock, R. F. Hout, Jr., W. J. Hehre, D. J. DeFrees, and R. F. Stewart, ibid., 20, 3650 (1981).
structures for HCLi , akin to the linear structure of LiOH^{25} and the planar structure found for $\mathrm{LiNH}_{2}{ }^{26}$ Triplet $\mathrm{HCLi}\left({ }^{3} \Sigma^{-}\right)$is $34.7 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the singlet (${ }^{1} \Delta$). Mulliken population analysis ${ }^{18}$ shows that only 7.7% of the π-electron density resides on the lithium in the ${ }^{3} \Sigma^{-}$molecule, while 15.0% of the π-density is on the lithium in the ${ }^{1} \Delta$ state. This increase in the π-character is consistent with the shorter C -Li bond in the singlet $(1.875 \AA)$ than the triplet $(1.893 \AA)$.

In contrast, both singlet and triplet equilibrium structures of HSiLi are bent (C_{s} symmetry). Unlike the situation in silylene $\left(\mathrm{SiH}_{2}\right)$, triplet $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right) \mathrm{HSiLi}$ is lower in energy than the singlet (' A^{\prime}) by $9.7 \mathrm{kcal} / \mathrm{mol}$. In the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state, the singly occupied molecular orbitals (SOMO) are the $8 a^{\prime}$ and $2 a^{\prime \prime}$ orbitals. There is some π-delocalization in the $2 \mathrm{a}^{\prime \prime}$ orbital onto the lithium (8.9%). The $\mathrm{Si}-\mathrm{Li}$ separation, $2.406 \AA$, is smaller than that in $\mathrm{H}_{3} \mathrm{SiLi}$, $2.542 \AA$, optimized at the same level of theory. ${ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{Li}$ angle is 140.5°, larger than the 118.0° angle in triplet silylene.

In singlet HSiLi, the nonbonding electrons lie in the plane of the molecule. The Si-Li bond length, $2.635 \AA$, is longer than that found in $\mathrm{H}_{3} \mathrm{SiLi}$. The $\mathrm{H}-\mathrm{Si}-\mathrm{Li}$ bond angle (94.4°) is only slightly larger than the $93.4^{\circ} \mathrm{H}-\mathrm{Si}-\mathrm{H}$ angle in singlet silylene.
$\mathrm{H}_{2} \mathrm{CBe}$ and $\mathrm{H}_{2} \mathrm{SiBe}$. $\mathrm{HF} / 3-21 \mathrm{G}$ optimization of $\mathrm{H}_{2} \mathrm{CBe}$ yields planar equilibrium structures with C_{2} symmetry, 1. In agreement

with earlier studies, ${ }^{27-29}$ Table II shows that the ${ }^{3} \mathrm{~B}_{1}$ form is 23.6 $\mathrm{kcal} / \mathrm{mol}$ more stable than the ${ }^{1} \mathrm{~A}_{1}$ structure. By use of the polarized $6-31 \mathrm{G}^{*}$ basis, DeFrees ${ }^{23}$ has shown that the singlet state reoptimizes to a nonplanar C_{s} structure, 2 (the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bisec-tor-C-Be angle is 160.4°), though this may be due to mixing with the lower ${ }^{1} \mathrm{~B}_{1}$ structure ${ }^{30}$ At MP4SDTQ/6-311G**//HF/6$31 \mathrm{G}^{*}$, corrected for differences in zero-point energies ($\mathrm{HF} / 6-$ $31 \mathrm{G}^{*}$), the ${ }^{1} \mathrm{~A}_{1}{ }^{-3} \mathrm{~B}_{1}$ separation is $16.5 \mathrm{kcal} / \mathrm{mol} .{ }^{30}$

Equilibrium structures of HCBeH were found to be linear ($C_{\infty v}$ symmetry) at both the HF/3-21G and HF/6-31G ${ }^{* 30}$ levels of theory. The results summarized in Table II show the ${ }^{3} \Sigma^{-}$state to be more stable than the ${ }^{1} \Delta$ by $37.3 \mathrm{kcal} / \mathrm{mol}$; the value is 35.4 $\mathrm{kcal} / \mathrm{mol}$ at MP4SDTQ/6-311G**. ${ }^{30}$ At this higher level, the ${ }^{3} \Sigma^{-}$state of HCBeH is only $2.9 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the ${ }^{3} \mathrm{~B}_{1}$ state of $\mathrm{H}_{2} \mathrm{CBe}, 1$; hence both forms might be experimentally observable.

Our results, apparently the first on the silicon analogues, indicate definite differences between the bonding preferences of carbon and silicon with beryllium. Of the silicon compounds with composition $\mathrm{H}_{2} \mathrm{SiBe}$, the lowest, energy equilibrium structure is the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state of planar, bent $\mathrm{HSiBeH}, 3$. The $\mathrm{Be}-\mathrm{H}$ bond is only

3.9° from linear with the $\mathrm{Si}-\mathrm{Be}$ axis, but the $\mathrm{H}-\mathrm{Si}-\mathrm{Be}$ angle is 128.6°. The HOMO, the single occupied π-orbital, with 8.0% of the π-electron density residing on the beryllium, is $24.2 \mathrm{kcal} / \mathrm{mol}$

[^4]higher in energy than the orbital energy of the unpaired electron in the silicon atomic orbital. Singlet (${ }^{1}$ A') HSiBeH also has a planar, bent geometry, 3 , and is $9.0 \mathrm{kcal} / \mathrm{mol}$ above the triplet. The singlet HOMO is a lone pair on the silicon in the plane of the molecule. The lack of π-electrons causes an increase in the Si -Be bond distance from $2.128 \AA$ in the triplet to $2.256 \AA$ in the singlet. The $\mathrm{Si}-\mathrm{Be}$ bond length in $\mathrm{H}_{3} \mathrm{SiBeH}$ has an intermediate value of $2.204 \AA,{ }^{2}$ which suggests a possible delocalization of the $\mathrm{Si}-\mathrm{H}$ bonding electrons into the vacant p-orbitals on beryllium. Again the $\mathrm{Si}-\mathrm{Be}-\mathrm{H}$ bond angle in singlet HSiBeH is nearly linear $\left(176.6^{\circ}\right)$, but the $\mathrm{H}-\mathrm{Si}-\mathrm{Be}$ bond angle of 94.2° is close to the 93.4° angle found in singlet silylene. ${ }^{2}$

The ${ }^{3} \mathrm{~B}_{1}$ state of $\mathrm{H}_{2} \mathrm{SiBe}$ with $\mathrm{C}_{2 v}$ symmetry, while corresponding to the lowest energy structure of the $\mathrm{H}_{2} \mathrm{CBe}$ analogue, is found to lie $19.0 \mathrm{kcal} / \mathrm{mol}$ above triplet HSiBeH . The HOMO of $\mathrm{H}_{2} \mathrm{SiBe}$ is the singly occupied π-orbital and is $8.4 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the SOMO with the nonbonding electron on the beryllium. In the triplet $\mathrm{H}_{2} \mathrm{CBe}$, the π-electron SOMO is 44.9 $\mathrm{kcal} / \mathrm{mol}$ more stable than the nonbonding SOMO. This difference in the orbital energies 8.4 vs . $-44.9 \mathrm{kcal} / \mathrm{mol}$ is a good indication of the relative weakness of a silicon-beryllium π-bond. Only 13.0% of the π-electron density was located on beryllium in $\mathrm{H}_{2} \mathrm{SiBe}$, and the charge on this atom, +0.255 , is decreased over the carbon species. The $\mathrm{H}-\mathrm{Si}-\mathrm{Be}$ bond angle (124.8°) is only slightly larger than the corresponding angle in $\mathrm{H}_{2} \mathrm{CBe}\left(124.0^{\circ}\right)$.

The ${ }^{1} \mathrm{~A}_{1}\left(C_{2 v}\right)$ state of $\mathrm{H}_{2} \mathrm{SiBe}$ has one imaginary frequency and represents a transition structure. The minimum, a ${ }^{1} \mathrm{~A}^{\prime}\left(C_{s}\right)$ state with pyramidal geometry 4 , is found to lie $21.2 \mathrm{kcal} / \mathrm{mol}$ above the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state of HSiBeH , or only $3.2 \mathrm{kcal} / \mathrm{mol}$ above the ${ }^{3} \mathrm{~B}_{1} \mathrm{H}_{2} \mathrm{SiBe}$ structure. The $\mathrm{H}-\mathrm{Si}-\mathrm{Be}$ and $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ bond angles are 91.8° and 96.2°, respectively. The HOMO is a nonbonding orbital on silicon. The hydrogen atoms have a much larger negative charge (-0.111) than silicon (-0.053).
$\mathbf{H}_{3} \mathrm{CB}$ and $\mathrm{H}_{3} \mathrm{SiB}$. The lowest energy structure of the $\mathrm{H}_{3} \mathrm{CB}$ constitution is singlet (${ }^{1} \mathrm{~A}_{1}$) $\mathrm{H}_{2} \mathrm{C}=\mathrm{BH}$, with C_{2} symmetry, $\mathbf{5}$. The

$\underset{\sim}{5}$

$\underset{\sim}{\sim}$

C-B separation, $1.380 \AA$ (longer than the STO-3G value of 1.339 \AA), ${ }^{31,32}$ is much shorter than the $\mathrm{C}-\mathrm{B}$ single bond distance of 1.577 $\AA \AA$ found in staggered $\mathrm{H}_{3} \mathrm{CBH}_{2}$ (both at 3-21G). ${ }^{2}$ The π-HOMO of $\mathrm{H}_{2} \mathrm{C}=\mathrm{BH}$ has 41% of the electron density residing on boron. The lowest energy triplet state of $\mathrm{H}_{2} \mathrm{CBH}$ is formed by moving an electron from the π-orbital to the nonbonding orbital on the boron. The resulting planar triplet with C_{s} symmetry, 6 , lies 44.1 $\mathrm{kcal} / \mathrm{mol}$ above the singlet. The shift of a bonding π-electron to boron $(5 \rightarrow 6)$ has several effects. The remaining π-electron is polarized more towards carbon; in 6 only 16% of the π-density is on boron. There is an increase of $0.148 \AA$ in the $\mathrm{C}-\mathrm{B}$ bond distance and a decrease in the positive charge on boron.
$\mathrm{H}_{3} \mathrm{CB}$, produced from the reaction of $\mathrm{H}_{3} \mathrm{CBBr}_{2}$ with either the liquid alloy NaK or the compound $\mathrm{C}_{8} \mathrm{~K}$, ${ }^{33}$ is found to be 26.7 $\mathrm{kcal} / \mathrm{mol}$ above the singlet state of $\mathrm{H}_{2} \mathrm{C}=\mathrm{BH}, 5$, and has $C_{3 c}$ symmetry. The HOMO in $\mathrm{H}_{3} \mathrm{CB}$ is the boron lone pair; the $\mathrm{C}-\mathrm{B}$ bond length, $1.572 \AA$, is almost the same as the value ($1.577 \AA$) found in $\mathrm{H}_{3} \mathrm{CBH}_{2} .{ }^{2}$ Two HCBH_{2} structures were located. The energy of the more stable form, the ${ }^{1} \mathrm{~A}_{1}, C_{2 c}$ singlet, was 37.8 $\mathrm{kcal} / \mathrm{mol}$ above the singlet $\mathrm{H}_{2} \mathrm{C}=\mathrm{BH}$. The planar $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right) C_{s}$ triplet, 7 , lies $4.3 \mathrm{kcal} / \mathrm{mol}$ higher. The π-HOMO of singlet HCBH_{2} has

(31) J. D. Dill, P. v. R. Schleyer, and J. A. Pople, J. Am. Chem. Soc., 97, 3402 (1975).
(32) C. M. Cook and L. C. Allen, Organometallics, 1, 246 (1982).
(33) S. M. van der Kerk, J. Boersma, and G. J. van der Kerk, Tetrahedron Lett. 4765 (1976).
21.1% of the electron density residing on the boron. The triplet state, 7 , is formed by exciting an electron from the π-orbital to a nonbonding orbital on carbon: the $\mathrm{H}-\mathrm{C}-\mathrm{B}$ bond angle bends to 141.1°. Only 13.5% of the π-electron density is found to be on boron. There is also an increase in the $\mathrm{C}-\mathrm{B}$ bond length from $1.410 \AA$ in the singlet to $1.523 \AA$ in the triplet.
Four stable $\mathrm{H}_{3} \mathrm{SiB}$ isomers were located; as with the $\mathrm{H}_{2} \mathrm{SiBe}$ compounds, the lowest energy equilibrium structure has divalent silicon. This singlet HSiBH_{2} molecule $\mathbf{8}$ has C_{s} symmetry (${ }^{1} \mathrm{~A}^{\prime}$).

The $\mathrm{H}-\mathrm{B}-\mathrm{H}$ bisector- $\mathrm{B}-\mathrm{Si}$ angle is 178.6°; the arrangement about boron is virtually planar. This molecule is very different from the corresponding carbon compound, $\mathbf{5}$. Singlet HCBH_{2} has $C_{2 v}$ symmetry and a π-HOMO; in 8 , the HOMO is a lone pair on the silicon. The $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle is only 91.5°, which is 1.9° smaller than the $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ angle in singlet silylene. ${ }^{2}$ This possibly indicates that interaction between the $\mathrm{Si}-\mathrm{H}$ bond and a vacant p-orbital on boron is more important than that involving the silicon lone pair.

The triplet (${ }^{3} \mathrm{~A}^{\prime \prime}$) state of $\mathrm{HSiBH}_{2}, 9$, has a planar geometry with C_{s} symmetry, is $8.8 \mathrm{kcal} / \mathrm{mol}$ above the singlet, and has a different ordering of the singly occupied orbitals than the carbon analogue, 7. In 7 , the carbon-centered SOMO was $14.0 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the π-SOMO, while in the silicon species (9) the π-SOMO is $25.8 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the

$\stackrel{9}{\sim}$
nonbonding silicon SOMO. The π-electron density in HSiBH_{2} on boron (14.6%) helps explain the decrease in the $\mathrm{Si}-\mathrm{B}$ bond length from $1.994 \AA$ in the singlet (8) to $1.961 \AA$ in the triplet (9). All other bond lengths also decrease on going from singlet to triplet. The $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle in 9 is 123.1°, which is 18.0° smaller than the $\mathrm{H}-\mathrm{C}-\mathrm{B}$ angle in 7 and 5.1° larger than the bond angle in triplet silylene. ${ }^{2}$ This increase in the bond angle compared to silylene is most probably due to steric interactions with the syn-hydrogen on the boron.

The singlet (${ }^{1} \mathrm{~A}_{1}$) $C_{2 v}$ structure of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{BH}$ is analogous to 5 , the most stable equilibrium structure of the $\mathrm{H}_{3} \mathrm{CB}$ family, but is calculated to be $12.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than singlet $\mathrm{HSiBH}_{2}(8)$. As with 5, the HOMO is the π-orbital with $\mathbf{4 7 . 2 \%}$ of the electron density on boron. This represents an increase in the density on the boron of 6.3% over the carbon species, as expected from electronegativity considerations. The $\mathrm{Si}-\mathrm{B}$ bond distance in $\mathrm{H}_{2} \mathrm{Si}=\mathrm{BH}(1.816 \AA)$ is $0.178 \AA$ shorter than in singlet HSiBH_{2}.
The ${ }^{1} \mathrm{~A}_{1}\left(C_{3 v}\right)$ state of $\mathrm{H}_{3} \mathrm{SiB}$ corresponds to the second most stable structure in the carbon set but is found to be $42.0 \mathrm{kcal} / \mathrm{mol}$ above 8. As with the carbon analogue, the HOMO is the boron lone pair. The $\mathrm{Si}-\mathrm{B}$ bond length in $\mathrm{H}_{3} \mathrm{SiB}(2.135 \AA)$ is unusually long, e.g., $0.110 \AA$ longer than the separation found in the lowest energy structure of $\mathrm{H}_{3} \mathrm{SiBH}_{2} .{ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle (109.9°) is much closer to the tetrahedral value than the carbon analogue.

HCB and HSiB. The low-lying states of HCB and CBH, discussed separately, ${ }^{34}$ were all found to have linear ($C_{\infty_{6}}$) geometries. The lowest energy equilibrium HCB structure is the ${ }^{3} \Pi$ state with three π-electrons. The results presented in Table II show that the ${ }^{1} \Delta$ and ${ }^{3} \Sigma$ - states, both with two π-electrons, are higher in energy by 49.2 and $14.2 \mathrm{kcal} / \mathrm{mol}$, respectively. MP4SDTQ/6-311G**//HF/6-31G* total energies, corrected for zero-point differences ($\mathrm{HF} / 6-31 \mathrm{G}^{*}$), reduce the separation be-

[^5] press.
tween the ${ }^{3} \Pi$ and ${ }^{3} \Sigma^{-}$forms slightly, to $12.7 \mathrm{kcal} / \mathrm{mol}$. The lowest energy CBH structure has only two π-electrons (${ }^{3} \Sigma^{-}$); the ${ }^{1} \Delta$ and ${ }^{3} \Pi$ structures lie 23.6 and $10.5 \mathrm{kcal} / \mathrm{mol}$ higher (Table II). At MP4SDTQ/6-311G**//HF/6-31G*, the separation between the triplet states of CBH is a bit less, $9.4 \mathrm{kcal} / \mathrm{mol}{ }^{34}$ At this higher level of theory, the ${ }^{3} \Pi$ state of HCB is only $3.9 \mathrm{kcal} / \mathrm{mol}$ lower in energy than ${ }^{3} \Sigma^{-}$CBH; the results in Table II show a slightly smaller separation ($2.8 \mathrm{kcal} / \mathrm{mol}$). The barrier to conversion of CBH into HCB is predicted to be $23.7 \mathrm{kcal} / \mathrm{mol},{ }^{34}$ suggesting that both triplet species might exist independently.

The linear HBSi molecule with two unpaired π-electrons (${ }^{3} \Sigma^{-}$) is the global energy minimum. As with the carbon species, the orbital energy of the electron residing on the silicon is lower than for the π-electrons with the same spin. In CBH the energy splitting between these orbitals was $19.8 \mathrm{kcal} / \mathrm{mol}$, while in HBSi the splitting increases to $33.4 \mathrm{kcal} / \mathrm{mol}$. This reflects the relative stability of silicon nonbonding and π-orbitals. No other equilibrium structure was found to be within $50 \mathrm{kcal} / \mathrm{mol}$ of triplet HBSi . Pairing the π-electrons results in a linear (${ }^{1} \Delta$) HBSi molecule which is $51.7 \mathrm{kcal} / \mathrm{mol}$ above the triplet. As with the carbon analogues, similar Si-B bond lengths are found for the HBSi molecules with two π-electrons, $1.855 \AA$ in the triplet and $1.875 \AA$ in the singlet.
Attempts to find linear HSiB structures all resulted in species having one or more imaginary frequencies. An optimized bent structure $\left(C_{s}\right)$ for the ${ }^{1} \mathrm{~A}^{\prime}$ state of HSiB was found with the 3-21G basis set and has an $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle of only 82.9°. Even though a frequency calculation at this geometry yielded no imaginary frequencies, addition of d-functions to the silicon atom ($3-21 \mathrm{G}^{(*)}$ basis set) resulted in the hydrogen atom migrating, with no energy barrier, to the boron atom to form the ${ }^{1} \Delta$ state of HBSi . $\mathrm{A}^{3} \mathrm{~A}^{\prime \prime}$ state, also with C_{s} symmetry, of HSiB was found; it also had a very small $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle of only 86.0°. This molecule is $70.5 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the ground-state HBSi molecule. The HOMO is the lone π-electron, but it is only 3.3 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than the MO with the lone electron on silicon. Most (68.6%) of the π-electron density resides on the boron. The relatively long Si-B bond distance, $1.933 \AA$, is still smaller than for the lowest energy equilibrium structure of HSiBH_{2}.
$\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CSiH}_{4}$, and $\mathrm{Si}_{2} \mathrm{H}_{4}$. The ground state of ethylene has been extensively studied in the past. ${ }^{10,14 a, 35-41}$ The optimized $\mathrm{C}-\mathrm{C}$ bond distance of $1.315 \AA$ agrees well with the $\mathrm{HF} / 4-31 \mathrm{G}^{37,38}$ and the $\mathrm{HF} / 6-31 \mathrm{G}^{* 10.39}$ results but is $0.015 \AA$ smaller than the experimental value of $1.330 \AA .^{42}$ Better agreement with experiment is obtained at the MP2/6-31G* level of theory ${ }^{39}$ The perpendicular triplet state $\left({ }^{3} \mathrm{E}\right)$ is calculated to be $62.1 \mathrm{kcal} / \mathrm{mol}$ higher in energy, in agreement with the results of Buenker and Peyerimhoff ${ }^{40}$ and Köhler and Lischka. ${ }^{41}$ As expected, this is slightly less than the experimental rotational barrier of singlet ethylene, $65 \mathrm{kcal} / \mathrm{mol} .{ }^{43}$ The loss of the π-bond results in an increase in the $\mathrm{C}-\mathrm{C}$ bond distance of $0.159 \AA$, with virtually no change in the $\mathrm{C}-\mathrm{H}$ bond lengths or $\mathrm{H}-\mathrm{C}-\mathrm{C}$ bond angles. This $\mathrm{C}-\mathrm{C}$ "single" bond is still $0.068 \AA$ shorter than the bond length found in ethane, optimized at the same level of theory. ${ }^{2}$

The lowest energy state of ethylidene, $\mathrm{H}_{3} \mathrm{CCH}$, has a staggered C_{s} conformation and is a triplet $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$. It is calculated to be 66.7 $\mathrm{kcal} / \mathrm{mol}$ above the ethylene ground state. The $\mathrm{C}-\mathrm{C}$ bond length,
(35) M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 52, 4064 (1970).
(36) W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Prog. Phys. Org. Chem., 11, 175 (1974).
(37) W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 93, 808 (1971).
(38) R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 724 (1971).
(39) D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley, and J. A. Pople, J. Am. Chem. Soc., 101, 4085 (1979).
(40) R. J. Buenker and S. D. Peyerimhoff, Chem. Phys., 9, 75 (1976).
(41) H. J. Köhler and H. Lischka, J. Am. Chem. Soc., 104, 5884 (1982).
(42) K. Kuchitsu, J. Chem. Phys., 44, 906 (1966).
(43) J. E. Douglas, B. S. Rabinovitch, and F. S. Looney, J. Chem. Phys., 23. 315 (1955).
$1.496 \AA$, is longer than in any of the $\mathrm{H}_{2} \mathrm{CCH}_{2}$ structures but is still shorter than the distance in ethane. A stable singlet state (${ }^{1}$ A) was found for $\mathrm{H}_{3} \mathrm{CCH}, 77.4 \mathrm{kcal} / \mathrm{mol}$ above the ground state. This singlet-triplet energy separation of $10.7 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{H}_{3} \mathrm{CCH}$ is in good agreement with the CI results of Ha, Nguyen, and Vanquickenborne, ${ }^{44}$ though larger than the CEPA results of Köhler and Lischka. ${ }^{41}$ A recent theoretical study using a larger basis set ${ }^{10}$ argues that this singlet structure does not really exist since there is no barrier for rearrangement into ethylene.

There has been recent interest, both theoretical ${ }^{12,45-52}$ and experimental, ${ }^{3,4,53-55}$ in the structure and relative energy of silaethylene and methylsilylene and the energy barrier of the 1,2hydrogen shift in these and related molecules. In agreement with the earlier studies of Schaefer et al. ${ }^{47-49}$ and Köhler and Lischka, ${ }^{41}$ we calculate very little energy difference between these two molecules. Our results show silaethylene to be more stable by $2.2 \mathrm{kcal} / \mathrm{mol}$, of which $1.4 \mathrm{kcal} / \mathrm{mol}$ comes from the difference in zero-point energy, while the previous work indicated methylsilylene to be more stable by $0.4^{47,48}$ and $0.6 \mathrm{kcal} / \mathrm{mol} .^{41}$ These results are in serious contrast to the recent experimental results of Pau, Pietro, and Hehre, ${ }^{55 a}$ who contend that 1 -methylsilaethylene is $28 \mathrm{kcal} / \mathrm{mol}$ more stable than dimethylsilylene. It is unlikely that the replacement of a hydrogen by a methyl group could cause that much of a change in the energies of these compounds; ${ }^{52 \mathrm{~d} .55 \mathrm{~b}}$ more study appears to be necessary. ${ }^{49}$

The silaethylene structure agrees well with other theoretical results. ${ }^{41,45,46,48-52}$ The HOMO is the π-bond, where $\mathbf{4 2 . 1 \%}$ of the electron density is found to reside on silicon. The atomic charges on the heavy atoms are quite large, -0.771 on carbon and +0.550 on silicon, but the dipole moment is relatively small (0.722 debye). This is due to the compensating charges of the hydrogens. Those bound to the carbon are positively charged (+0.216), while those
(44) T.-K. Ha, M. T. Nguyen, and L. G. Vanquickenborne, Chem. Phys. Lett., 92, 459 (1982).
(45) Y. Yoshioka, J. D. Goddard, and H. F. Schaefer III, J. Am. Chem. Soc., 103, 2452 (1981).
(46) Y. Yoshioka and H. F. Schaefer III, J. Am. Chem. Soc., 103, 7366 (1981).
(47) J. D. Goddard, Y. Yoshioka, and H. F. Schaefer III, J. Am. Chem. Soc., 102, 7644 (1980).
(48) D. M. Hood and H. F. Schaefer III, J. Chem. Phys., 68, 2985 (1978).
(49) H. F. Schaefer III, Acc. Chem. Res., 15, 283 (1982).
(50) R. Ahlrichs and R. Heinzmann, J. Am. Chem. Soc., 99, 7452 (1977).
(51) K. Vasudevan and F. Grein, Chem. Phys. Lett., 75, 75 (1980).
(52) (a) O. P. Strausz, L. Gammie, G. Theodorakoupoulos, P. G. Mezey, and I. G. Csizmadia, J. Am. Chem. Soc., 98, 1622 (1976); (b) R. K. Gosavi, H. E. Gunning, and O. P. Strausz, Chem. Phys. Lett., 59, 321 (1977), (c) P. Rosmus, H. Bock, B. Soluki, G. Maier, and G. Mihm, Angew. Chem., Int. Ed. Engl., 20, 598 (1981), (d) S. Nagase and T. Kudo, J. Chem. Soc., Chem. Commun., 141 (1984), (e) M. Hanamura, S. Nagase, and K. Morokuma, Tetrahedron Lett., 1813 (1981); (f) Y. Apeloig and M. Karni, J. Chem. Soc., Chem. Commun., 768 (1984); J. Am. Chem. Soc., 106, 6676 (1984); (g) M. W. Schmidt, M. S. Gordon, and M. Depuis, Ibid., 107, 2585 (1985).
(53) (a) R. T. Colin and D. L. Wood, J. Am. Chem. Soc., 103, 1843 (1981); see also: (b) V. N. Auner and J. Grobe, Z. Anorg. Allg. Chem. 459, 15 (1979).
(54) (a) T. J. Drahnak, J. Michl, and R. West, J. Am. Chem. Soc., 103, 1845 (1981); see also: (b) T. J. Drahnak, J. Michl, and R. West, ibid., 101, 5427 (1979), (c) C. A. Arrington, R. West, and J. Miehl, ibid., 105, 6167 (1983), (d) L. E. Gussel'nikov, V. V. Vokova, V. G. Avakyan, N. S. Nametkin, M. G. Voronkov, S. V. Kirpichenko, and E. N. Suslova, J. Organomet. Chem. 254, 173 (1983), (e) G. Maier, G. Mihm, H. P. Reisenauer, Angew. Chem., Int. Ed. Engl., 20, 597 (1981); Chem. Ber., 117, 2351 (1984); (g) N. Wiberg, J. Organomet. Chem., 273, 141 (1984); (h) N. Wiberg, G. Wagner, and G. Muller, Angew. Chem., Int. Ed. Engl., 24, 229 (1985).
(55) (a) C. F. Pau, W. J. Pietro, and W. J. Hehre, J. Am. Chem. Soc., 105, 16 (1983), (b) I. M. T. Davidson, S. Ijadi-Maghsoodi, T. J. Barton, and N. Tillman, ibid., 478 (1984); (c) I. M. T. Davidson, K. J. Hughes, and R. J. Scampton, J. Organomet. Chem., 272, 11 (1984), (d) I. S. Alanaimi, W. P. Weber, A.S. Nazran, and D. Griller, ibid., 272, C10 (1984); (e) A. S. Nazran, J. A. Hawari, D. Griller, I. S. Alnaimi, and W. P. Weber, J. Am. Chem. Soc., 106, 7267 (1984), (f) L. E. Gusel'nikov, V. V. Volkova, V. G. Avakyan, and N. S. Nametkin, J. Organomet. Chem., 201, 137 (1980), (g) S. A. Burns, G. T. Burns, and T. J. Barton, J. Am. Chem. Soc., 104, 6140 (1982), (h) T. J. Barton, S. A. Burns, and G. T. Burns, Organometallics, 1, 210 (1982), (i) P. R. Jones, A. H.-B. Cheng, and T. E. Albenesi, ibid., 3, 78 (1984); (j) G. Maier, H. P. Mihm, H. P. Reisenauer, and D. Littman, Chem. Ber., 117, 2369 (1984); (k) S. Nagase and T. Kudo, J. Chem. Soc., Chem. Commun., 141, 1392 (1984); (1) Y. Apeloig and M. Karni, Ibid., 1048 (1985); (m) H. Vancik, G. Raabe, M. J. Michalczyk, R. West, and J. Michl, Ibid., 107, 4097 (1985).
bound to the silicon have a negative charge (-0.106).
$\mathrm{A}^{3} \mathrm{~A}^{\prime \prime}, C_{s}$ structure of silaethylene, $\mathbf{1 0}$, was found to be 33.7 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than the ${ }^{1} \mathrm{~A}_{1}$ structure. In 10 , the local

$\stackrel{10}{\sim}$
geometry at carbon is planar but nonplanar at silicon. The nonbonding orbital on silicon is $38.1 \mathrm{kcal} / \mathrm{mol}$ less stable than the carbon atomic p-orbital, as expected from electronegativity considerations. The total electron density in the carbon p-orbital (0.954) demonstrates some interaction with the SiH_{2} group. The $\mathrm{Si}-\mathrm{C}$ bond distance, $1.859 \AA$, is larger than the double bond length in the ground state but still is shorter than in the other methylsilylene isomers.

The methylsilylene structure given by Goddard, Yoshioka, and Schaefer ${ }^{47}$ (using a double- ζ basis set) has $\mathrm{Si}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{H}$ bond distances which are between the $3-21 \mathrm{G}$ and the $3-21 \mathrm{G}^{(*)}$ optimized values. The HOMO is the lone pair on the silicon atom; this extra electron density causes a decrease in the Si charge to +0.494 . As with the other singlet divalent silicon species, the $\mathrm{H}-\mathrm{Si}-\mathrm{C}$ bond angles is quite small $\left(95.8^{\circ}\right)$, only 2.4° larger than the angle in singlet silylene. ${ }^{2}$

The triplet state (${ }^{3} \mathrm{~A}^{\prime \prime}$) of methylsilylene is calculated to be 22.0 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than silaethylene. The methylsilylene singlet-triplet splitting of $19.8 \mathrm{kcal} / \mathrm{mol}$ agrees very well with a splitting of $18.7 \pm 5 \mathrm{kcal} / \mathrm{mol}$ predicted earlier ${ }^{47}$ and is slightly larger than the splitting of silylene $(16.4 \mathrm{kcal} / \mathrm{mol})$ at the same level of theory. ${ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{C}$ bond angle $\left(118.6^{\circ}\right)$ is only 0.6° larger than the angle found in triplet silylene. ${ }^{2}$ The increase in the bond angle between the singlet and triplet structures probably is also responsible for the decrease in the bond lengths to the silicon atom. In the singlet, the $\mathrm{Si}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{H}$ bond distances are 1.907 and $1.511 \AA$, respectively, while in the triplet they are 1.899 and $1.474 \AA$ A.

Triplet silylmethylene, $\mathrm{H}_{3} \mathrm{SiCH}$, is calculated to be 45.2 $\mathrm{kcal} / \mathrm{mol}$ above the lowest energy structure or $23.2 \mathrm{kcal} / \mathrm{mol}$ above the triplet state of methylsilylene. Goddard, Yoshioka, and Schaefer ${ }^{47}$ calculated triplet methylsilylene to be $25.9 \mathrm{kcal} / \mathrm{mol}$ more stable than triplet silylmethylene, while Köhler and Lischka ${ }^{41}$ found a difference of $21.3 \mathrm{kcal} / \mathrm{mol}$. All these results agree quite well. The $\mathrm{Si}-\mathrm{C}$ bond length in $\mathrm{H}_{3} \mathrm{SiCH}(1.832 \AA$) is shorter than in the methylsilylene molecules. The highest SOMO is a carbon p -orbital perpendicular to the $\mathrm{H}-\mathrm{C}-\mathrm{Si}$ plane. The population of only 0.957 electrons in this carbon atomic orbital demonstrates some interaction with the $\mathrm{Si}-\mathrm{H}$ bonds. The positive charge on the silicon atom attains its largest value (+0.743); each hydrogen bound to the silicon has an average charge of -0.137 . The $\mathrm{H}-\mathrm{C}-\mathrm{Si}$ bond angle, 150.7°, is much larger than the HF/3-21G angle in triplet methylene (131.0°). ${ }^{2}$

The singlet state of silylmethylene was found to have C_{1} symmetry and is $71.0 \mathrm{kcal} / \mathrm{mol}$ less stable than silaethylene or 25.8 $\mathrm{kcal} / \mathrm{mol}$ above triplet $\mathrm{H}_{3} \mathrm{SiCH}$. This singlet-triplet separation is in good agreement with previous theoretical values (20.3^{41} and $27.2^{47} \mathrm{kcal} / \mathrm{mol}$). The $\mathrm{Si}-\mathrm{C}-\mathrm{H}$ bond angle, 119.2°, is larger than the earlier results, and the Si-C separation, $1.882 \AA$, is slightly smaller.

There has been much recent theoretical interest in the structures and relative stability of disilene, $\mathrm{H}_{2} \mathrm{SiSiH}_{2}$, and of silylsilylene, $\mathrm{H}_{3} \mathrm{SiSiH}^{56-62}$ We find the lowest energy structure to be the

[^6]singlet state of disilene. At the $3-21 \mathrm{G}$ level of optimization, this structure has a $C_{2 h}$ trans, bent configuration, 11 , in accord with

the $3-21 G$ results of Poirier and Goddard ${ }^{56}$ and the $4-3 \mathrm{lG}$ results of Snyder and Wasserman. ${ }^{57}$ When polarization functions are added to silicon (3-21G(*) basis), a planar equilibrium structure with $D_{2 h}$ symmetry, 12, results instead. This was also found by Lischka and Köhler. ${ }^{48}$ This structure has no imaginary frequencies, verifying that it is indeed a minimum at this level. However, recent results using the larger 6-31G* basis ${ }^{62}$ favor 11 , though the energy difference between 11 and 12 is small. ${ }^{63}$ The presence of a silicon-silicon π-bond results in a bond distance of $2.116 \AA$, which is $0.226 \AA$ smaller than the bond length in disilane, both optimized at $3-21 \mathrm{G}^{(*)} .^{2}$ Our calculated Si -Si bond length is in excellent agreement with the values of 2.140 and $2.160 \AA$ found in substituted disilenes. ${ }^{5}$

In agreement with the results of Lischka and Köhler, ${ }^{58}$ the triplet state (${ }^{3} \mathrm{~B}$) of disilene is found to have C_{2} symmetry, 13 .

13

H $\quad \underset{\sim}{4}$

However, we find 13 to be $19.6 \mathrm{kcal} / \mathrm{mol}$ less stable than the singlet state. This is a significant change from the near degeneracy calculated at the Hartree-Fock level of theory ${ }^{58}$ or the valence CI plus Davidson correction (CI + DC) value of $10.6 \mathrm{kcal} / \mathrm{mol}$ calculated by Poirer and Goddard. ${ }^{56}$ With the loss of the π-bond, the $\mathrm{Si}-\mathrm{Si}$ bond distance in the triplet increases to $2.325 \AA$, but this is still $0.017 \AA$ shorter than the bond length in disilane. ${ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ bisector makes an angle of 134.1° with the $\mathrm{Si}-\mathrm{Si}$ bond axis. The partial positive charges on the silicon atoms increase to +0.182 .

The ground state of silylsilylene, $\mathrm{H}_{3} \mathrm{SiSiH}$, is a singlet with a C_{s} staggered geometry, 14. We find this ' A^{\prime} ' state to be 6.2 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than singlet $\mathrm{H}_{2} \mathrm{SiSiH}_{2}$. This can be compared with the CI + DC $3-21 \mathrm{G}$ result of $10.1 \mathrm{kcal} / \mathrm{mol},{ }^{56}$ the Hartree-Fock value of $5.6 \mathrm{kcal} / \mathrm{mol}$ using a more extensive basis, ${ }^{58}$ or the MP3/6-31G*//HF/6-31G* separation of $5.7 \mathrm{kcal} / \mathrm{mol}^{62}$ The silylene hydrogen angle with the $\mathrm{Si}-\mathrm{Si}$ axis is only $92.0^{\circ}, 1.4^{\circ}$ smaller than the angle found in singlet silylene. ${ }^{2}$ The $\mathrm{Si}-\mathrm{Si}$ bond distance, $2.391 \AA$, is $0.049 \AA$ longer than in disilane.

The ${ }^{3} \mathrm{~A}^{\prime \prime}$ state of $\mathrm{H}_{3} \mathrm{SiSiH}$, also represented by 14 , is calculated to be $16.5 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the ground-state disilene structure. The singlet-triplet energy separation of $10.3 \mathrm{kcal} / \mathrm{mol}$ for silylsilylene again is larger than has been reported earlier. ${ }^{56.58}$ The hydrogen bound to the divalent silicon makes an angle of 121.6° with the $\mathrm{Si}-\mathrm{Si}$ bond, which is 3.6° larger than the angle found in triplet silylene. ${ }^{2}$ This increased bond angle may be related to the shorter Si -Si bond distance of $2.322 \AA$. There is also a definite change in the atomic charges when singlet and triplet silylsilylene are compared. The tetravalent silicon has a much larger positive charge in the triplet $(+0.382)$ than in the singlet $(+0.256)$. Conversely, the divalent silicon has a charge of +0.205 in the singlet and is virtually neutral in the triplet. In both molecules, all hydrogens are negatively charged, though the magnitudes are larger in the singlet than in the triplet.
$\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CSiH}_{2}$, and $\mathrm{Si}_{2} \mathrm{H}_{2}$. The linear singlet ground state of acetylene ${ }^{64,65}$ has been previously examined at many levels of

[^7]theory. ${ }^{14 a, 37-39,66-68}$ The triplet prefers a cis geometry $\left({ }^{3} \mathrm{~B}_{2}\right)$ with $C_{2 v}$ symmetry. This lies $85.0 \mathrm{kcal} / \mathrm{mol}$ above linear acetylene but is $9.4 \mathrm{kcal} / \mathrm{mol}$ more stable than the $C_{2 h}$ trans structure $\left({ }^{3} \mathbf{B}_{u}\right)$. The CI calculations of Wetmore and Schaefer ${ }^{69}$ using a double- ζ basis set indicated the ${ }^{3} \mathrm{~B}_{2}$ and ${ }^{3} \mathrm{~B}_{u}$ states to be 80.5 and 96.4 $\mathrm{kcal} / \mathrm{mol}$, respectively, above the acetylene ground state. We find both cis and trans triplets to have $\mathrm{C}-\mathrm{C}$ bond lengths of $1.318 \AA$, $0.130 \AA$ longer than in the singlet state; Wetmore and Schaefer found the trans triplet to have a longer $\mathrm{C}-\mathrm{C}$ bond than the cis. ${ }^{69}$

The most stable form of vinylidene, $\mathrm{H}_{2} \mathrm{CC}$, is the ${ }^{1} \mathrm{~A}_{1}$ state with C_{20} symmetry. The π-HOMO is $24.0 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the lone-pair orbital on the divalent carbon. The calculated C-C bond length of $1.294 \AA$ agrees well with the SCF results of Hopkinson, Yates, and Csizmadia ${ }^{70}$ but is shorter than the correlated distance obtained by Dykstra and Schaefer. ${ }^{71}$ As the level of the calculation increases, so does the energy difference between singlet vinylidene and the ground state of acetylene. Including zero-point energies, at the HF/4-31G//HF/STO-3G level ${ }^{35,36}$ the separation is $33.5 \mathrm{kcal} / \mathrm{mol}$ and is $36.9 \mathrm{kcal} / \mathrm{mol}$ at the MP4SDQ/6-31G*//HF/6-31G* level. ${ }^{66}$ The results presented here (MP4SDTQ/6-31G*//HF/3-21G) show that the separation increases to $41.7 \mathrm{kcal} / \mathrm{mol}$ and is finally $44.1 \mathrm{kcal} / \mathrm{mol}$ at the MP4SDTQ/6-311G**//MP2/6-31G* level of theory. ${ }^{68}$ At this latter level, the 1,2-hydrogen rearrangement barrier to give acetylene is only $0.9 \mathrm{kcal} / \mathrm{mol}$, and so this vinylidene structure may not be a minimum on the potential surface at the highest level of theory. ${ }^{72}$

The ${ }^{3} \mathrm{~B}_{2}$ state of vinylidene results from the promotion of a lone-pair electron to the in-plane p-orbital. There is an increase in the $\mathrm{C}-\mathrm{C}$ bond length of $0.052 \AA$ on going from singlet (1.294 \AA) to triplet ($1.346 \AA$). There is also an increase in the $\mathrm{H}-\mathrm{C}-\mathrm{C}$ bond angles from 120.7° in the singlet to 121.4° in the triplet. The double- ζ SCF results of Conrad and Schaefer ${ }^{73}$ agree, except for a slightly shorter $\mathrm{C}-\mathrm{C}$ distance. The singlet-triplet separation in vinylidene is calculated to be $49.6 \mathrm{kcal} / \mathrm{mol}$; the $\mathrm{GVB}-\mathrm{CI}$ value is $46 \mathrm{kcal} / \mathrm{mol} .^{74}$

Several theoretical studies have recently examined the SiCH_{2} molecule ${ }^{75-79}$ in an attempt to characterize a silicon-carbon triple bond. First observed by Hopkinson and Lien, ${ }^{76}$ and confirmed by later studies, ${ }^{77-79}$ linear HSiCH is found to rearrange to methylenesilylene, $\mathrm{H}_{2} \mathrm{CSi}$, without any barrier at the Hartree-Fock level. Gordon and Pople ${ }^{77}$ suggested that if electron correlation is included, an equilibrium trans structure of HSiCH can be found in a shallow potential minimum. Such a molecule has been recently found by Hoffmann, Yoshioka, and Schaefer ${ }^{78}$ using a
(64) (a) E. H. Pyler and E. D. Tidwell, J. Opt. Soc. Am., 53, 589 (1963);
(b) W. J. Lafferty and R. J. Thibault, J. Mol. Spectrosc., 14, 79 (1964). (65) L. E. Sutton, Ed., Spec. Publ.-Chem. Soc., No. 18 (1965).
(66) J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem., 14, 545 (1978).
(67) R. Krishnan, M. J. Frisch, J. A. Pople, and P. v. R. Schleyer, Chem. Phys. Lett., 79, 408 (1981).
(68) R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).
(69) R. W. Wetmore and H. F. Schaefer III, J. Chem. Phys., 64, 1648 (1978).
(70) A. C. Hopkinson, K. Yates, and I. G. Csizmadia, J. Chem. Phys., 55, 3835 (1971).
(71) C. E. Dykstra and H. F. Schaefer III, J. Am. Chem. Soc., 100, 1378 (1978)
(72) J. A. Pople, Pure Appl. Chem., 55, 343 (1983).
(73) M. P. Conrad and H. F. Schaefer III, J. Am. Chem. Soc., 100, 7820 (1978).
(74) J. H. Davis, W. A. Goddard III, and L. B. Harding, J. Am. Chem. Soc., 99, 2919 (1977).
(75) J. N. Murrell, H. W. Kroto, and M. F. Guest, J. Chem. Soc., Chem. Commun., 619 (1977).
(76) A. C. Hopkinson and M. H. Lien, J. Chem. Soc., Chem. Commun., 107 (1980)
(77) M. S. Gordon and J. A. Pople, J. Am. Chem. Soc., 103, 2945 (1981) Also see M. S. Gordon, ibid., 104, 4352 (1982).
(78) M. R. Hoffmann, Y. Yoshioka, and H. F. Schaefer III, J. Am. Chem Soc., 165, 1084 (1983).
(79) A. C. Hopkinson, M. H. Lien, and I. G. Cizmadia, Chem. Phys. Lett., 95, 232 (1983).
double- ξ basis with d-functions added to carbon and silicon and CI .

All previous studies ${ }^{75-79}$ find the lowest energy structure to be the singlet (${ }^{1} \mathrm{~A}_{1}$) state of methylenesilylene, $\mathrm{H}_{2} \mathrm{CSi}$, with $C_{2 v}$ symmetry. The π-HOMO is $39.2 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the lone-pair orbital on silicon. Less than half (42.5%) of the π-electron density resides on silicon; the charges are +0.390 on Si and -0.833 on C .

The lowest energy triplet state is also a planar ($C_{2 v}$) structure of $\mathrm{H}_{2} \mathrm{CSi}\left({ }^{3} \mathrm{~A}_{2}\right)$. This molecule results from promoting an electron from the π-orbital to the nonbonding silicon p-orbital in the plane of the molecule and is $35.6 \mathrm{kcal} / \mathrm{mol}$ above the singlet structure. Hopkinson, Lien, and Csizmadia ${ }^{79}$ calculate the separation to be slightly smaller ($30.3 \mathrm{kcal} / \mathrm{mol}$), but their results suggest that increasing the level of the calculation will increase the separation. The loss of a π-electron lengthens the C -Si bond from $1.696 \AA$ in the singlet to $1.867 \AA$ in the triplet.

A second triplet state of $\mathrm{H}_{2} \mathrm{CSi}$ with $C_{2 v}$ symmetry is formed by unpairing the nonbonding electrons on the silicon. This molecule is $28.9 \mathrm{kcal} / \mathrm{mol}$ less stable than the ${ }^{3} \mathrm{~A}_{2}$ structure. This energy ordering is expected since the π-orbital is higher in energy than the nonbonding orbital in the singlet molecule. Since the ${ }^{3} \mathrm{~B}_{2}$ structure still has two π-electrons, the C -Si separation (1.780 \AA) is shorter than in the ${ }^{3} \mathrm{~A}_{2}$ molecule. The π-electrons are almost equally shared between the two heavy atoms (49.8% on silicon). This results in the smallest silicon positive charge in this set $(+0.198)$, although carbon still has a substantial (-0.647) charge.

Two triplet structures of HSiCH were located; trans -HSiCH $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ is lowest in energy. This molecule, $61.1 \mathrm{kcal} / \mathrm{mol}$ less stable than singlet methylenesilylene, has a lone pair on the silicon atom, a single electron in a carbon hybrid orbital, and a single electron in a π-orbital with 86.9% of the electron density on carbon. This structure reflects the ground states of methylene, a triplet, and silylene a singlet. The $\mathrm{H}-\mathrm{C}-\mathrm{Si}$ angle, 143.8°, is 12.8° larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in triplet methylene (HF/3-21G), ${ }^{2}$ but the $\mathrm{H}-\mathrm{Si}-\mathrm{C}$ angle, 96.3°, is only 2.9° larger than the $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ angle in singlet silylene at the same level of theory.

The ${ }^{3} \mathrm{~A}^{\prime}$ cis structure of $\mathrm{HSiCH}, 74.3 \mathrm{kcal} / \mathrm{mol}$ above singlet $\mathrm{H}_{2} \mathrm{CSi}$, can be regarded as the combination of triplet methylene and triplet silylene. The $\mathrm{H}-\mathrm{Si}-\mathrm{C}$ bond angle is 121.3°, which is 3.3° larger than the $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ angle in triplet silylene. ${ }^{2}$ There are two π-electrons with 47.0% of the density on silicon. This reduces the $\mathrm{Si}-\mathrm{C}$ bond distance from $1.834 \AA$ in the trans structure to $1.737 \AA$ in the cis form (which only has one π-electron) and also reduces the charge on silicon from +0.470 to +0.342 .
$\mathrm{At} \mathrm{HF} / 3-21 \mathrm{G}$, the lowest energy $\mathrm{H}_{2} \mathrm{Si}_{2}$ singlet is the ${ }^{1} \mathrm{~A}_{1}, C_{2 v}$ $\mathrm{H}_{2} \mathrm{SiSi}$ structure. This agrees with the GVB pseudopotential results of Snyder, Wasserman, and Moskowitz. ${ }^{80}$ The linear disilyne, HSiSiH , geometry gave two imaginary frequencies and the planar trans geometry one imaginary frequency. Two stable nonplanar singlet structures were located. The lower energy form (3-21G) was the ${ }^{1}$ A state with C_{2} symmetry, 15 ; the less stable

${ }^{1} \mathrm{~A}_{1}$ isomer, 16, had two bridging hydrogens, which we denote by $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$. Addition of silicon d-function atoms ($3-21 \mathrm{G}^{(*)}$ basis) resulted in a complete reordering of the singlet energies. The disilyne species 15 disappeared on optimization, the $\mathrm{H}-\mathrm{Si}-\mathrm{Si}$ bond angle decreased until the $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$ structure, 16, was reached. At $\mathrm{HF} / 3-21 \mathrm{G}^{(*)}, 16$ lies lower than the $\mathrm{H}_{2} \mathrm{SiSi} C_{2 v}$ structure. Further improvement of the basis set and electron correlation corrections caused this energy difference to increase; at MP4SDTQ/6-31G* the $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$ isomer is more stable than $\mathrm{H}_{2} \mathrm{SiSi}$ by $9.1 \mathrm{kcal} / \mathrm{mol}$. This is in agreement with the results of Morokuma and co-

[^8]workers, ${ }^{81}$ Binkley, ${ }^{82}$ and others, ${ }^{83}$ who all find 16 to be the lowest energy structure.

The HF/3-21G ${ }^{(*)}$ Si-Si bond distance in 16, $2.172 \AA$, is 0.057 \AA longer than in the ground-state disilene but is still $0.170 \AA$ shorter than the distance found in disilane. ${ }^{2}$ The $\mathrm{Si}-\mathrm{H}$ distances involving the bridging hydrogens, $1.668 \AA$, are quite long. The $\mathrm{Si}-\mathrm{H}-\mathrm{Si}$ and $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ bond angles are 81.3° and 72.5°, respectively. The silicon charges are +0.166 ; the hydrogens have the same negative charge.
A singlet (${ }^{1} \mathrm{~A}_{1}$) $C_{2 v}$ structure of $\mathrm{H}_{2} \mathrm{SiSi}$ is $9.1 \mathrm{kcal} / \mathrm{mol}$ above $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$. The π-HOMO is $47.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the lone-pair orbital on the terminal silicon. Even with this π-bond, the Si -Si distance elongates to $2.175 \AA$, which is even longer (0.003 \AA) than the separation found in 16 . The $\mathrm{H}-\mathrm{Si}-\mathrm{Si}$ bond angles are 123.5°. The charges on the central and terminal silicons are only +0.039 and +0.097 , respectively.

The triplet (${ }^{3} \mathrm{~A}^{\prime \prime}$) state of $\mathrm{H}_{2} \mathrm{SiSi}$ with nonplanar C_{s} symmetry is calculated to be only $19.3 \mathrm{kcal} / \mathrm{mol}$ above 16 . In contrast to the planar singlet, there is only one " π-electron", and this occupies a nonbonding orbital largely on the central silicon atom. The second SOMO is now an atomic p-orbital on the terminal silicon. This electron distribution results in an increase in the $\mathrm{Si}-\mathrm{Si}$ bond distance to $2.280 \AA$. The $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ bisector makes an angle of 163.3° with the $\mathrm{Si}-\mathrm{Si}$ axis; this shows the degree of nonplanarity about the central silicon. The charge on the central silicon $(+0.143)$ is now greater than that on the terminal silicon $(+0.032)$.
$\mathrm{H}_{3} \mathrm{CN}$ and $\mathrm{H}_{3} \mathrm{SiN}$. Six equilibrium $\mathrm{H}_{3} \mathrm{CN}$ structures have been found; the planar (C_{s}) singlet $\mathrm{H}_{2} \mathrm{CNH}$ molecule (${ }^{1} \mathrm{~A}^{\prime}$) is lowest in energy. This is in agreement with experiment ${ }^{84 a}$ and previous calculations. ${ }^{13.84 \mathrm{~b}}$ The nitrogen lone-pair HOMO is $25.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the π-orbital. Triplet $\mathrm{H}_{2} \mathrm{CNH}$, formed by promoting an electron from the π-orbital to the π^{*}-orbital, no longer is planar. ${ }^{85}$ The favored trans structure with C_{s} symmetry, $17\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$, exhibits an increase in the $\mathrm{C}-\mathrm{N}$ bond distance from

$1.256 \AA$ in the singlet to $1.427 \AA$. The bisector of the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle makes an angle of 148.2° with the $\mathrm{C}-\mathrm{N}$ bond (the tetrahedral value is 125.26°). The singlet-triplet energy separation for $\mathrm{H}_{2} \mathrm{CNH}$ is calculated to be $65.0 \mathrm{kcal} / \mathrm{mol}$. Demuynck, Fox, Yamaguchi, and Schaefer ${ }^{85}$ obtained a splitting of about 64 $\mathrm{kcal} / \mathrm{mol}$ using CI, while Pople and co-workers ${ }^{13}$ calculated an MP4SDTQ/6-31G** plus zero-point correction separation of 65.2 $\mathrm{kcal} / \mathrm{mol}$.

The ${ }^{1} \mathrm{~A}^{\prime}\left(C_{s}\right)$ state of HCNH_{2} is $39.9 \mathrm{kcal} / \mathrm{mol}$ above the lowest energy equilibrium structure. Like singlet $\mathrm{H}_{2} \mathrm{CNH}$, this molecule also is planar. ${ }^{36}$ The HOMO is the lone pair on carbon; the π-orbital is next lower in energy. The $\mathrm{C}-\mathrm{N}$ bond distance, 1.332 \AA, is increased $0.065 \AA$ over the separation in singlet $\mathrm{H}_{2} \mathrm{CNH}$. The ${ }^{3} \mathrm{~A}^{\prime \prime}, C_{s}$ structure of HCNH_{2} is $31.9 \mathrm{kcal} / \mathrm{mol}$ higher than the singlet or $71.8 \mathrm{kcal} / \mathrm{mol}$ above ${ }^{1} \mathrm{~A}^{\prime} \mathrm{H}_{2} \mathrm{CNH}$. Similar to 17 , this molecule has a nonplanar trans structure. Here the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bisector makes an angle of 159.3° with the $\mathrm{N}-\mathrm{C}$ axis, showing a greater degree of planarity about the nitrogen.

Two stable nitrenes, $\mathrm{H}_{3} \mathrm{CN}$, were found. The more stable triplet (${ }^{3} \mathrm{~A}^{\prime \prime}$) has $C_{3 v}$ symmetry and nearly tetrahedral bond angles. It
(81) M. Hanamura, K. Morokuma, and S. Nagase, to be submitted for publication.
(82) J. S. Binkley, J. Am. Chem. Soc. 106, 603 (1984).
(83) (a) H. Lischka and H.-J. Köhler, J. Am. Chem. Soc. 105, 6646 (1983), (b) F. Kawai, T. Noro, A. Murakami, K. Ohno, Chem. Phys. Lett. 92, 429 (1982), (c) J. Kalcher, A. Sax, and G. Olbrich, Int. J. Quantum Chem. 25, 543 (1984), (d) B. Liu, to be submitted for publication. (e) N. C. Baird, Can. J. Chem., 63, 71 (1985).
(84) (a) R. Pearson and F. J. Lovas, J. Chem. Phys., 66, 4149 (1977), (b) P. Botschwina, Chem. Phys. Lett., 29, 580 (1974).
(85) J. Demuynck, D. J. Fox, Y. Yamaguchi, and H. F. Schaefer III, J. Am. Chem. Soc., 102, 6204 (1980).
lies $46.8 \mathrm{kcal} / \mathrm{mol}$ above the lowest energy $\mathrm{H}_{2} \mathrm{CNH}$ structure, in good agreement with previous results. ${ }^{13,85}$ The singlet (${ }^{1} \mathrm{~A}^{\prime}$) structure has C_{s} symmetry (18) and is $44.3 \mathrm{kcal} / \mathrm{mol}$ higher in

energy than triplet $\mathrm{H}_{3} \mathrm{CN}$. The interaction between the vacant nitrogen p-orbital and the hydrogen in the C_{s} symmetry plane leads to a Jahn-Teller distortion of one of the $\mathrm{H}-\mathrm{C}-\mathrm{N}$ bond angles to only 98.5°, as opposed to a 115.5° value for the other hydrogens. This molecule is found to have no barrier to rearrangement to the lowest energy structure when correlation is included; ${ }^{13}$ therefore, it does not exist.

The two most stable structures of $\mathrm{H}_{3} \mathrm{SiN}$ are similar to their carbon analogues, but the order is reversed. The planar C_{s} $\mathrm{HSiNH}_{2}\left({ }^{1} \mathrm{~A}^{\prime}\right)$ structure is the lowest in energy. The HOMO is the lone pair of the silicon atom; the π-orbital is $73.0 \mathrm{kcal} / \mathrm{mol}$ lower in energy. Nevertheless, this is only a partial π-bond, since 86.3% of the electron density resides on nitrogen. This still shortens the $\mathrm{Si}-\mathrm{N}$ bond length $(1.689 \AA$) by $0.012 \AA$ relative to the separation in silylamine. ${ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{N}$ bond angle, 95.9°, is 2.5° larger than the $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ angle found in singlet silylene. ${ }^{2}$ The nitrogen atom has almost a full negative charge (-0.926); the silicon charge is +0.453 .

Planar $\mathrm{H}_{2} \mathrm{SiNH}$ has C_{s} symmetry (${ }^{1} \mathrm{~A}^{\prime}$) and is $20.2 \mathrm{kcal} / \mathrm{mol}$ less stable than singlet HSiNH_{2}. The π-MO again is lower in energy than the nonbonding MO, but the separation is only 5.6 $\mathrm{kcal} / \mathrm{mol}$. As expected from electronegativity arguments, 67.7% of the π-electron density resides on nitrogen. The π-bond, more fully developed than in HSiNH_{2}, results in a shorter $\mathrm{Si}-\mathrm{N}$ bond length of $1.531 \AA$. At the $3-21 \mathrm{G}$ level, the $\mathrm{Si}-\mathrm{N}-\mathrm{H}$ bond angle is 132.8°. Addition of d-functions to silicon ($3-21 \mathrm{G}^{(*)}$ basis) increases this angle to 180° and the symmetry to $C_{2 v}$. This molecule had no imaginary frequencies and is an equilibrium structure at this level. Since the optimized structures are so different, the zero-point energy listed in Table I is taken from the $3-21 \mathrm{G}^{(*)}$ results. The charge on nitrogen is reduced to -0.772 , while the silicon charge increases to +0.710 .

The triplet $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ state of HSiNH_{2} is found to be $40.3 \mathrm{kcal} / \mathrm{mol}$ above the global minimum and has a nonplanar trans geometry, 19. Since no π-bonding is present, the $\mathrm{Si}-\mathrm{N}$ bond length is 1.710

\AA, the same distance found in silylamine. ${ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{N}$ bond angle is $120.7^{\circ}, 2.7^{\circ}$ larger than in triplet silylene. ${ }^{2}$ The bisector of the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle makes an angle of 177.9° with the $\mathrm{Si}-\mathrm{N}$ axis. This almost planar arrangement about the nitrogen is very similar to the geometry for the ground state of silylamine at the same level of theory. ${ }^{2}$ As expected, the SOMO's on silicon are higher in energy than the lone-pair orbital on nitrogen. There is little change in the atomic charges between the singlet and triplet states of HSiNH_{2}; the greatest difference is found in the hydrogen bound to silicon. This has a -0.200 charge in the singlet and -0.109 in the triplet.

The lowest energy triplet state of $\mathrm{H}_{2} \operatorname{SiNH}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ has a nonplanar trans geometry (20) with C_{s} symmetry and is $36.2 \mathrm{kcal} / \mathrm{mol}$ less stable than singlet $\mathrm{H}_{2} \mathrm{SiNH}$. A second $\mathrm{H}_{2} \mathrm{SiNH}{ }^{3} \mathrm{~A}^{\prime \prime}$ triplet has a nonplanar cis structure (C_{s} symmetry) 21 and is 43.5

20

$\underset{\sim}{21}$
$\mathrm{kcal} / \mathrm{mol}$ less stable than 20. In 20, the Si-N bond length, 1.757 \AA, is $0.047 \AA$ longer than the separation in silylamine. ${ }^{2}$ The SOMO on nitrogen is in an atomic p-orbital, and some donation to the SiH_{2} group occurs since this orbital population is only 0.963 electrons. In 21 , the $\mathrm{Si}-\mathrm{N}$ distance is $1.753 \AA$, very slightly less than in the trans structure. Again the p-orbital on the nitrogen contains only 0.956 electrons, showing some interaction with the SiH_{2} group.

Similar to the triplet methylnitrene, the triplet $\left({ }^{3} \mathrm{~A}_{1}\right)$ state of $\mathrm{H}_{3} \mathrm{SiN}$ has $C_{3 v}$ symmetry. This molecule is $56.4 \mathrm{kcal} / \mathrm{mol}$ less stable than singlet HSiNH_{2} thus making it energetically equivalent to triplet trans $-\mathrm{H}_{2} \mathrm{SiNH}, 20$. In triplet $\mathrm{H}_{3} \mathrm{SiN}$ there is a very long $\mathrm{Si}-\mathrm{N}$ bond distance of $1.816 \AA$. This is analogous to the long $\mathrm{C}-\mathrm{N}$ separation found in the carbon species, but the $\mathrm{H}-\mathrm{Si}-\mathrm{N}$ bond angles (108.8°) are slightly smaller. The atomic p-orbitals on the nitrogen atom contain only 0.962 electrons, suggesting some interaction with the SiH_{3} group. As in the carbon analogue, the charge on the nitrogen atom (-0.345) is smaller than in the other species. The large positive charge on silicon $(+0.736)$ is due to the higher electronegativity of the hydrogen atoms, which have a -0.130 charge.

HCN and HSiN. The energy separation between the ${ }^{1} \Sigma^{+}$states of linear (C_{∞}) HCN and HNC has been extensively studied, both experimentally ${ }^{86-88}$ and theoretically. ${ }^{89-92}$ Our $16.8 \mathrm{kcal} / \mathrm{mol}$ separation, although larger than the CI or Møller-Plesset ${ }^{91.92}$ calculations, does seem to support the $14.8 \pm 2 \mathrm{kcal} / \mathrm{mol}$ experimental value ${ }^{88}$ more than the higher $17.2-26.3 \mathrm{kcal} / \mathrm{mol}^{87}$ or lower $10.3 \mathrm{kcal} / \mathrm{mol}^{86}$ experimental alternatives. The ground-state geometry of the HCN molecule has already been given at the HF/3-21G level ${ }^{14 a}$ and at many other levels of calculation. ${ }^{14,36,38,39,68}$ In all cases, uncorrelated optimizations yield bond distances which are smaller than are found experimentally. ${ }^{93}$ The nitrogen lone-pair MO is found to have a lower energy than the π-MO's by $42.6 \mathrm{kcal} / \mathrm{mol}$. The triplet state of HCN is formed through $\pi-\pi^{*}$ excitation. The resulting loss of π-bonding produces an equilibrium bent geometry $\left(C_{s}\right)$ with an $\mathrm{H}-\mathrm{C}-\mathrm{N}$ angle of 123.5° and an increase in the $\mathrm{C}-\mathrm{N}$ separation from $1.137 \AA$ in the singlet to $1.303 \AA$ in the triplet.

In singlet HNC , the lone pair on carbon has a higher energy than the $\pi-\mathrm{MO}$ by $26.9 \mathrm{kcal} / \mathrm{mol}$. The $\mathrm{N}-\mathrm{C}$ bond distance in $\mathrm{HNC}, 1.160 \AA$, is larger than the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ result ${ }^{39}$ but still is $0.005 \AA$ smaller than the experimental value, ${ }^{94}$ The triplet is formed here by promoting an electron from the σ-lone pair on carbon to a π^{*}-orbital, and a bent $\left(C_{s}\right)$ equilibrium geometry is produced. The presence of nonbonding electrons on the nitrogen results in a $\mathrm{H}-\mathrm{N}-\mathrm{C}$ bond angle of 114.1°; the $\mathrm{C}-\mathrm{N}$ bond length increases to $1.290 \AA$.

When carbon is replaced by silicon, the lowest energy structure is linear HNSi $\left({ }^{1} \Sigma^{+}\right)$. The $\mathrm{Si}-\mathrm{N}$ and $\mathrm{N}-\mathrm{H}$ bond lengths (calculated to be 1.528 and $0.991 \AA$, respectively) are both shorter than the experimental values ${ }^{95}$ but agree well with the SCF results of Preuss, Buenker, and Peyerimhoff. ${ }^{96}$ In their study, optimization at the multiconfigurational CI level resulted in better agreement in the $\mathrm{Si}-\mathrm{N}$ bond length with experiment. Unlike HNC, the lone-pair orbital on silicon in HNSi is $6.2 \mathrm{kcal} / \mathrm{mol}$ lower than the π-MO's. As expected from electronegativity arguments, 74.1% of the π-electron density resides on nitrogen. The silicon has a substantial positive charge $(+0.401)$, as does the
(86) A. Maki and R. Sams, J. Chem. Phys., 75, 4178 (1981).
(87) M. M. Maricq, M. A. Smith, S. J. S. M. Simpson, and G. B
(87) M. M. Maricq, M. A. Smith, S. J. S. M. Simpson, and G. B. Ellison, J. Chem. Phys., 74, 6154 (1981).
(88) C.-F. Pau and W. J. Hehre, J. Phys. Chem., 86, 321 (1982).
(89) P. K. Pearson, H. F. Schaefer III, and U. Wahlgren, J. Chem. Phys. 62, 350 (1975).
(90) O. P. Charkin, Russ. J. Inorg. Chem., 24, 324 (1979).
(91) L. T. Redman, G. D. Purvis III, and R. J. Bartlet, J. Chem. Phys. 72, 986 (1980).
(92) R. Krishnan and J. A. Pople, to be submitted for publication.
(93) C. C. Costain, J. Chem. Phys., 29, 864 (1958).
(94) G. L. Blackman, R. D. Brown, P. D. Godfrey, and H. I. Gunn, Nature (London), 261, 395 (1976).
(95) J. F. Ogilvie and S. Cradock, Chem. Commun., 12, 364 (1966).
(96) R. Preuss, R. J. Buenker, and S. D. Peyerimhoff, J. Mol. Struct. 49, 171 (1978).
hydrogen (+0.352). Since these atoms are at opposite ends of a linear molecule, the dipole moment is calculated to be only 0.256 debye.

Triplet HNSi is found to be $83.5 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the singlet and, as with triplet HNC, has a bent (C_{s}) geometry with a bond angle of 151.0°. This singlet-triplet energy splitting is $13.2 \mathrm{kcal} / \mathrm{mol}$ less than that found in the carbon analogues. The electronic distribution is also found to be different in the triplet states of HNC and of HNSi . In HNC, both unpaired electrons reside in carbon nonbonding orbitals following the $n-\pi^{*}$ excitation from the singlet. On the other hand, triplet HNSi is derived from a $\pi-\pi^{*}$ excitation. This results in an increase in the N-Si bond distance to $1.723 \AA$, a value 0.013 longer than the separation found in $\mathrm{H}_{3} \mathrm{SiNH}_{2} .^{2}$ The presence of three nonbonding electrons on the silicon also causes a decrease in its partial positive charge to +0.291 .

The singlet (${ }^{1} \Sigma^{+}$) state of HSiN is also linear and is 55.0 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than singlet HNSi . This separation is less than previously reported values of 68^{96} and $74.7^{97} \mathrm{kcal} / \mathrm{mol}$. The Si-N bond length is $1.536 \AA, 0.008 \AA$ longer than the separation found in the singlet state of HNSi, and is actually 0.005 \AA longer than the $\mathrm{Si}-\mathrm{N}$ distance in singlet $\mathrm{H}_{2} \mathrm{SiNH}$. The nonbonding orbital on nitrogen is $46.3 \mathrm{kcal} / \mathrm{mol}$ lower than the π MO's. Comparison of this energy splitting to that in singlet HCN suggests that there is a destabilization of $3.7 \mathrm{kcal} / \mathrm{mol}$ for an electron in a $\mathrm{Si}-\mathrm{N} \pi$-bond relative to one in a $\mathrm{C}-\mathrm{N} \pi$-orbital. As expected, a greater percentage of the π-electron density resides on nitrogen in $\mathrm{HSiN}(57.1 \%)$ than in the corresponding carbon compound (52.6%). The silicon has a significantly large partial positive charge (+0.384), while the hydrogen bound to it has a slight negative charge (-0.023).

Triplet HSiN is also bent and is $89.5 \mathrm{kcal} / \mathrm{mol}$ less stable than the singlet. Once again, this splitting is smaller than that found in the HCN species; the electron distribution also is very different. At HF/3-21G, the ${ }^{3} \mathrm{~A}^{\prime}$ state of HSiN with the same valence electron distribution as the HCN analogue was found to rearrange, with no activation barrier, to the HNSi isomer. The stable structure of triplet HSiN is a molecule with unpaired π-electrons and can be thought of as resulting from a $\pi-\pi^{*}$ excitation. The two unpaired electrons are localized on different heavy atoms; 49.3% of the total π-electron density resides on nitrogen. This equal population of π - and π^{*}-orbitals results in a long $\mathrm{Si}-\mathrm{N}$ bond distance of $1.843 \AA$. The $\mathrm{H}-\mathrm{Si}-\mathrm{N}$ bond angle of 118.1° is virtually identical with the $\mathrm{H}-\mathrm{Si}-\mathrm{H}$ angle found in triplet silylene. ${ }^{2}$
$\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{SiO}$. As is typical for the more common carbon compounds, the ${ }^{1} \mathrm{~A}_{1}$ structure of formaldehyde, $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$, has already been calculated with a variety of basis sets. ${ }^{142,36,38,39,98}$ The $3-21 \mathrm{G} \mathrm{C-O}$ bond distance of $1.207 \AA$ is only $0.004 \AA$ longer than the experimental value of $1.203 \AA .{ }^{97}$ The $3-21 \mathrm{G} \mathrm{H}-\mathrm{C}-\mathrm{O}$ bond angle, 122.5°, is slightly larger than experiment, $121.75^{\circ} .^{98}$ The triplet (${ }^{3} \mathrm{~A}^{\prime \prime}$) state of formaldehyde is calculated to be 74.2 $\mathrm{kcal} / \mathrm{mol}$ above the ${ }^{1} \mathrm{~A}_{1}$ state and to have a nonplanar structure, 22. This state is formed by transferring an electron from the

p_{π} nonbonding orbital to the π^{*}-orbital. The loss in π-bonding results in an increase in the $\mathrm{C}-\mathrm{O}$ bond distance to $1.384 \AA$ (this is shorter than was previously calculated with the STO-3G ${ }^{36}$ and $4-31 \mathrm{G}^{99}$ basis sets).

[^9]The singlet $\left(C_{s}\right)$ trans structure of hydroxymethylene, HCOH , is calculated to be $57.9 \mathrm{kcal} / \mathrm{mol}$ above singlet formaldehyde. This can be compared to $54.7 \mathrm{kcal} / \mathrm{mol}$ obtained at MP4SDTQ/6$31 \mathrm{G}^{* *} / / \mathrm{MP}^{2} / 6-31 \mathrm{G}^{* 100 a}$ and $53.1 \mathrm{kcal} / \mathrm{mol}$ at MP4SDTQ/6-311G**//MP2/6-31G*. ${ }^{100 b}$ The nonbonding orbital on carbon is higher in energy than the π-orbital, while that on oxygen has a lower orbital energy. This structure would be expected from the ground states of water and of methylene. The $\mathrm{H}-\mathrm{C}-\mathrm{O}$ bond angle, calculated to be 103.1°, is actually 1.6° smaller than in methylene. The $\left(C_{s}\right)$ cis isomer of hydroxymethylene is found to be $4.8 \mathrm{kcal} / \mathrm{mol}$ less stable than the trans structure or 62.7 $\mathrm{kcal} / \mathrm{mol}$ above singlet formaldehyde. In this cis form, both lone-pair orbitals are found to have a higher energy than the π-orbital. Comparing the trans to the cis isomer, one finds that the $\mathrm{C}-\mathrm{O}$ bond distance is slightly shorter in the cis structure (1.330 vs. $1.335 \AA$), though both the $\mathrm{H}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{H}$ bond angles have increased due to the steric interaction. The $\mathrm{H}-\mathrm{C}-\mathrm{O}$ angle is now $107.6^{\circ}, 2.9^{\circ}$ larger than in singlet methylene. ${ }^{2}$ Triplet hydroxymethylene, 23, has C_{1} symmetry with a torsional angle

of 99.2°. It is $81.2 \mathrm{kcal} / \mathrm{mol}$ above the ground state of formaldehyde. The $\mathrm{C}-\mathrm{O}$ bond length is $1.370 \AA$ while the $\mathrm{H}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angles are 124.7° and 113.5°, respectively.
$\mathrm{H}_{2} \mathrm{Si}=\mathrm{O}$ has been postulated to be a reactive intermediate ${ }^{7}$ and has been considered theoretically by Jaquet, Kutzelnigg, and Staemmler (JKS). ${ }^{98}$ The singlet (${ }^{1} \mathrm{~A}_{1}$) state of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{O}$, with $C_{2 v}$ symmetry, is the most stable isomer. The same energy ordering is found for the valence orbitals in this molecule as in formaldehyde. The HOMO is the oxygen lone-pair p-orbital in the plane of the molecule; the π-orbital is lower in energy. Still lower is the other lone pair on the oxygen located in an sp-hybrid orbital. The orbital density shows that 73.1% of the π-charge is located on oxygen, as opposed to only 61.0% in formaldehyde. The oxygen p-orbital in the molecular plane contains only 1.720 electrons, suggesting a definite interaction between the oxygen and the $\mathrm{H}_{2} \mathrm{Si}$ group. The $\mathrm{Si}-\mathrm{O}$ bond length is calculated to be $1.509 \AA$, nearly the same as JKS. ${ }^{98}$ This is significantly shorter than the single bond distance ($1.633 \AA$) found in the ground state of silanol. ${ }^{2}$ The $\mathrm{H}-\mathrm{Si}-\mathrm{O}$ bond angle, 124.0°, is larger than the corresponding angle in formaldehyde but is close to that calculated by JKS. ${ }^{98}$

The bond dissociation energy, $\mathrm{H}_{2} \mathrm{SiO} \rightarrow \mathrm{H}_{2} \mathrm{Si}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, is unknown experimentally but was suggested by JKS to lie between values directly calculated ($118 \mathrm{kcal} / \mathrm{mol}$) and estimated from heats of hydrogenation ($155 \mathrm{kcal} / \mathrm{mol}$). Our directly calculated value, $132.1 \mathrm{kcal} / \mathrm{mol}$, is probably somewhat too low.

The trans structure of hydroxysilylene, HSiOH , only 4.6 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than the singlet state of $\mathrm{H}_{2} \mathrm{SiO}$, is 0.5 $\mathrm{kcal} / \mathrm{mol}$ more stable than the cis isomer. Since 89.4% of the π-electron density in both isomers resides on oxygen, the $\mathrm{Si}-\mathrm{O}$ bond lengths ($1.638 \AA$ in the trans and $1.632 \AA$ in the cis isomer) are comparable to the distance in silanol. ${ }^{2}$ The trans structure has an $\mathrm{H}-\mathrm{Si}-\mathrm{O}$ bond angle of 97.1°, which is 3.7° larger than the angle in singlet silylene; ${ }^{2}$ the cis isomer has a slightly larger $\mathrm{H}-\mathrm{Si}-\mathrm{O}$ angle (99.1°).

In contrast to the carbon analogues discussed above, the triplet state of HSiOH (24) is found to be more stable (by $26.7 \mathrm{kcal} / \mathrm{mol}$) than triplet $\mathrm{H}_{2} \mathrm{SiO}$. However, 24 is $42.6 \mathrm{kcal} / \mathrm{mol}$ less stable than singlet $\mathrm{H}_{2} \mathrm{SiO}$. Like triplet hydroxymethylene, 24 has C_{1} symmetry; the torsional angle is 91.0°. The $\mathrm{H}-\mathrm{Si}-\mathrm{O}$ angle, 118.5°, is very similar to the 118.0° angle found in triplet silylene, while the $\mathrm{Si}-\mathrm{O}$ bond distance of $1.645 \AA$ is actually $0.012 \AA$ longer than the separation found in silanol. ${ }^{2}$
(100) (a) L. B. Harding, H. B. Schlegel, R. Krishnan. and J. A. Pople, J. Phys. Chem., 84, 3394 (1980); (b) M. J. Frisch, R. Krishnan, and J. A. Pople, J. Phys. Chem., 85, 1467 (1981).

Margrave's group ${ }^{101}$ has recently reported that the reaction of silicon atoms with water in a solid argon matrix at 15 K produces HSiOH . The trans isomer, indicated to be more stable than the cis, has $\mathrm{Si}-\mathrm{O}, \mathrm{Si}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bond lengths of 1.591 ± 0.100, 1.521 ± 0.030, and $0.958 \pm 0.005 \AA$, and $\mathrm{H}-\mathrm{Si}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{O}-\mathrm{H}$ bond angles of $96.6 \pm 4^{\circ}$ and $114.5 \pm 6^{\circ}$, respectively. The agreement with our calculations is not very good. Margrave's thermochemical estimates suggest that HSiOH is roughly $14 \pm$ $15 \mathrm{kcal} / \mathrm{mol}$ less stable than $\mathrm{H}_{2} \mathrm{SiO}$; we obtain the same ordering.

The triplet $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$ state of $\mathrm{H}_{2} \mathrm{SiO}$ is calculated to be 69.3 $\mathrm{kcal} / \mathrm{mol}$ above the singlet, slightly less than the $74.2 \mathrm{kcal} / \mathrm{mol}$ singlet-triplet separation found in the carbon analogues. The $\mathrm{Si}-\mathrm{O}$ bond distance is quite large ($1.692 \AA$), though this increase is comparable to the increase found in comparing singlet and triplet formaldehyde.
$\mathbf{C O}$ and $\mathbf{S i O}$. The ground ${ }^{1} \Sigma{ }^{+}$state of carbon monoxide has already been studied with a wide range of basis sets at both the Hartree-Fock level of theory and including electron correlation. ${ }^{14 a, 36,39,68.102,103}$ The HF/3-21G bond length of $1.129 \AA^{14 \mathrm{a}}$ agrees well with the experimental value of $1.128 \AA \AA^{104}$ The HOMO, the lone pair on carbon, lies $57.5 \mathrm{kcal} / \mathrm{mol}$ above the π-electron MO's. The ${ }^{3} \Pi$ state is calculated to be $150.5 \mathrm{kcal} / \mathrm{mol}$ above the ground state, which is larger than the $139.2 \mathrm{kcal} / \mathrm{mol}$ separation found experimentally. ${ }^{104}$ The calculated internuclear separation is $1.248 \AA$, longer than the experimental value of 1.206 \AA, though in better agreement than the previously published STO-3G results of $1.306 \AA .{ }^{36}$ A higher ${ }^{3} \Sigma^{+}$state is calculated to be $163.2 \mathrm{kcal} / \mathrm{mol}$ above the ground state, which agrees well with the experimental separation of $159.6 \mathrm{kcal} / \mathrm{mol} .{ }^{104}$ The calculated $\mathrm{C}-\mathrm{O}$ bond distance $(1.402 \AA)$ again is longer than the experimental value of $1.352 \AA$.

Silicon monoxide, a molecule of astrophysical interest, ${ }^{105}$ is similar to CO in having a ${ }^{1} \Sigma^{+}$ground state. ${ }^{104}$ The $\mathrm{Si}-\mathrm{O}$ bond distance, calculated to be $1.496 \AA$, is only slightly shorter than the experimental value of $1.510 \AA^{104}$ and agrees with a prior calculation. ${ }^{105 b}$ The HOMO is the lone pair on silicon, but the orbital energies show that it is only $23.5 \mathrm{kcal} / \mathrm{mol}$ less stable than the π-orbitals. This decrease in the orbital separation from CO results in the ${ }^{3} \Sigma^{+}$being more stable than the ${ }^{3} \Pi$ state. The energy separation between the ${ }^{1} \Sigma^{+}$and the ${ }^{3} \Sigma^{+}$state is calculated here to be $98.9 \mathrm{kcal} / \mathrm{mol}$. This compares well with a tentative experimental value of $96.2 \mathrm{kcal} / \mathrm{mol}^{104}$ and is significantly larger than the $79.0 \mathrm{kcal} / \mathrm{mol}$ separation estimated by Robbe et al. ${ }^{105 a}$ from the results of CI calculations. The optimized internuclear separation of $1.714 \AA$ agrees with the rough experimental estimate of $1.70 \AA$. The ${ }^{3} \Pi$ state is $10.7 \mathrm{kcal} / \mathrm{mol}$ above the ${ }^{3} \Sigma^{+}$state or $109.6 \mathrm{kcal} / \mathrm{mol}$ above the ground state. This value is larger than the experimental value of $97.1 \mathrm{kcal} / \mathrm{mol}^{104}$ and the Cl value of $91.0 \mathrm{kcal} / \mathrm{mol} .{ }^{105 \mathrm{~s}}$ The optimized $\mathrm{Si}-\mathrm{O}$ bond length, $1.664 \AA$, is longer than the distance determined experimentally ($1.562 \AA$). The higher singlet states, studied by Langhoff and Arnold, ${ }^{105 b}$ were not examined here.

The dissociation energy, $\mathrm{SiO}\left({ }^{1} \Sigma^{+}\right) \rightarrow \mathrm{Si}\left({ }^{3} \mathrm{P}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, is found experimentally to be $190.6 \mathrm{kcal} / \mathrm{mol} .^{104.105 \mathrm{~b}}$ The MCSCF-CI result of Langhoff and Arnold, $188.0 \mathrm{kcal} / \mathrm{mol}$, is in better agreement than our value, $175.9 \mathrm{kcal} / \mathrm{mol}$, but our basis set is smaller.
CO_{2} and SiO_{2}. The ground $\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$state of carbon dioxide is calculated to have a $\mathrm{C}-\mathrm{O}$ bond distance of $1.156 \AA$. This compares well with the experimental separation of $1.162 \AA,{ }^{06}$ though slightly better agreement is found with the 4-31G basis $(1.158 \AA) .{ }^{107}$ A stable ${ }^{1} \Sigma^{+}$state of a linear $\mathrm{C}-\mathrm{O}-\mathrm{O}$ isomer was also calculated,

[^10]the energy is $172.6 \mathrm{kcal} / \mathrm{mol}$ above the ground state. The $\mathrm{C}-\mathrm{O}$ bond distance is $1.132 \AA$, and the $\mathrm{O}-\mathrm{O}$ separation is long, 1.929 A.

Feller, Katriel, and Davidson ${ }^{108}$ recently performed an MCSCF study with the same 3-21G basis set used here. They found a local minimum for a cyclic CO_{2} molecule, though at this level the barrier to conversion to the ground state was only $0.5 \mathrm{kcal} / \mathrm{mol}$. Performing an all single and double excitation CI and correcting the result for quadruple excitations, they found the barrier to increase to $9.04 \mathrm{kcal} / \mathrm{mol}$. In searching for such a cyclic species at the HF/3-21G level, the only stationary point located had one imaginary frequency. Further studies ${ }^{109}$ using the $6-31 \mathrm{G}^{*}$ basis located this cyclic CO_{2} molecule, but the MP4SDTQ/6-31G* barrier to conversion to the lowest energy linear structure was also found to be quite small.

The lowest energy form of molecular silicon dioxide is also a linear (${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$) $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ structure. The optimized $\mathrm{Si}-\mathrm{O}$ bond distance, $1.492 \AA$, is in good agreement with the $1.488-\AA$ separation found by Pacansky and Hermann. ${ }^{110}$ The charge on silicon is calculated here to be +1.090 , which is smaller than the +1.4 charge found in the earlier study. A cyclic form of SiO_{2} was found to lie $51.5 \mathrm{kcal} / \mathrm{mol}$ above the ground state. The optimized Si-O distance is $1.653 \AA$, and the $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angle is only 56.9°. This results in an O-O separation of $1.575 \AA$, which can be compared to a separation of $1.473 \AA$ in hydrogen peroxide, optimized at the same level of theory. ${ }^{23}$ The HOMO, a lone pair on silicon, is $16.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the out-of-plane π-bond MO between the oxygen atoms. The charge on silicon is +0.802 in this cyclic form. The linear $\mathrm{Si}-\mathrm{O}-\mathrm{O}$ molecule is calculated to be $114.4 \mathrm{kcal} / \mathrm{mol}$ above the ground state; the $\mathrm{Si}-\mathrm{O}$ bond distance, $1.500 \AA$, is only slightly longer than the separation in $\mathrm{O}-\mathrm{Si}-\mathrm{O}$. The $\mathrm{O}-\mathrm{O}$ distance, $1.655 \AA$, is long but not nearly as long as is found in the carbon analogue. The silicon charge is +0.720 , that on the central oxygen is -0.497 . The value for the terminal oxygen, which was found to possess virtually no charge in the carbon species, is -0.222 .

The MP4SDTQ/6-31G* energy for the ground triplet state of the oxygen atom is -74.89597 hartree. By combining this with the results in Tables I and II, carbon dioxide is indicated to be bound with respect to the ground states of carbon monoxide and oxygen by $115.4 \mathrm{kcal} / \mathrm{mol}$. The experimental value is 125.75 $\mathrm{kcal} /$ mol. ${ }^{111}$ The linear $\mathrm{C}-\mathrm{O}-\mathrm{O}$ molecule is unbound by 57.8 $\mathrm{kcal} / \mathrm{mol}$ with respect to the ground states of CO and O . Similarly, both the linear OSiO and the cyclic SiO_{2} molecules are calculated to be bound with respect to silicon monoxide and oxygen by 81.7 and $29.9 \mathrm{kcal} / \mathrm{mol}$, respectively. These values probably are underestimated at the level of theory used. As with the carbon analogue, the linear $\mathrm{Si}-\mathrm{O}-\mathrm{O}$ molecule is less stable than SiO and O by $33.1 \mathrm{kcal} / \mathrm{mol}$. The fact that the cyclic form of SiO_{2} is bound with respect to the dissociation products is encouraging, and since the MP4SDTQ/6-31G* barrier to conversion to linear OSiO is quite large, ${ }^{109}$ isolation of this molecule might be possible.

HCF and HSiF. The lowest energy equilibrium structures of singlet and triplet HCF have bent $\left(C_{s}\right)$ geometries, though in contrast to methylene, the singlet (${ }^{1} \mathrm{~A}^{\prime}$) is $12.9 \mathrm{kcal} / \mathrm{mol}$ more stable than the triplet ($\left(^{3} \mathrm{~A}^{\prime \prime}\right.$). In the singlet, the $\mathrm{H}-\mathrm{C}-\mathrm{F}$ angle is 103.1°, while the triplet has a bond angle of 122.6°. These angles are smaller than those found in the singlet and triplet states of methylene by 1.6° and 8.4°, respectively. ${ }^{2}$ In HSiF, the lowest energy singlet and triplet structures also have a bent geometry. As in silylene, the singlet ($\left.{ }^{1} \mathrm{~A}^{\prime}\right)$ is more stable than the triplet $\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$, though the separation has increased to $37.8 \mathrm{kcal} / \mathrm{mol}$. The H-$\mathrm{Si}-\mathrm{F}$ angle, 98.3°, is 4.9° larger than the angle in singlet silylene, ${ }^{2}$ while the angle in triplet $\mathrm{HSiF}, 116.0^{\circ}$, is smaller than in triplet SiH_{2} by $2.0^{\circ} .^{2}$ A recent experimental estimate of the $\mathrm{H}-\mathrm{Si}-\mathrm{F}$

[^11]angle in a solid argon matrix is $100 \pm 3^{\circ}$; the HSiF species being observed evidently is the singlet. ${ }^{112 a}$ Replacing a hydrogen by fluorine in either CH_{2} or SiH_{2} stabilizes the singlet relative to the triplet. In the carbon species, this stabilization is 29.7 $\mathrm{kcal} / \mathrm{mol}$, while in the silicon molecules it is $21.4 \mathrm{kcal} / \mathrm{mol}$. Schaefer's group has reported a study comparing HSiF with $\mathrm{H}_{2} \mathrm{Si}$ and $\mathrm{F}_{2} \mathrm{Si} .{ }^{112 \mathrm{~b}}$ Their $\mathrm{DZ}+\mathrm{P}$ (CISD) results agree well with ours in all respects.

Discussion

Structural and Energetic Comparison. There are often considerable differences in the ordering of states and in the geometries of corresponding unsaturated carbon and silicon molecules. Only ethylene, formaldehyde, carbon monoxide, and carbon dioxide give similar ground-state structures when carbon is replaced by silicon. In the ground states of all other molecules, either the multiplicities and/or the geometries are different. The bond angles of the ground-state silicon molecules imply a certain s, p-hybridization scheme; ${ }^{113}$ a pattern emerges which allows the differences between carbon and silicon to be understood. Silicon prefers to have nonbonding electrons in atomic orbitals with a high percentage of s-character. This major aspect of silicon chemistry has already been emphasized by Walsh and earlier workers. ${ }^{114}$ Thus divalent silicon has relatively small bond angles. Singlet silylene, more stable than the triplet by $16.4 \mathrm{kcal} / \mathrm{mol}$, has a bond angle of only $93.4^{\circ} .^{2}$ The silicon-to-hydrogen hybrid orbitals are calculated to have only 5.6% s-character; thus the lone pair is in a silicon hybrid orbital with $88.8 \% \mathrm{~s}$-character. In singlet methylene, the bond angle of 104.7° results in the lone pair residing in an orbital with $59.6 \% \mathrm{~s}$-character. In the triplet states, the bond angles are larger for both silylene and methylene. ${ }^{2}$ In triplet silylene, the silicon-to-hydrogen hybrid orbitals have 31.9% s-character; 36.2% is used in the in-plane SOMO. In triplet methylene, only 20.8% s -character is available for the in-plane SOMO.

For the substituted divalent molecules, the ground triplet state of HSiBeH was found to be $9.0 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the singlet, with the stability gained by forming a partial π-bond. The singlet state has an $\mathrm{H}-\mathrm{Si}-\mathrm{Be}$ bond angle of 94.2°, which leaves a large percentage of the s-orbital available for the nonbonding electrons. For the carbon analogues, no structure was determined where nonbonding valence electrons were found on carbon; all were used in bond formation. HSiBH_{2} is a ground-state singlet; formation of a partial π-bond was not able to stabilize the triplet as much. The $\mathrm{H}-\mathrm{Si}-\mathrm{B}$ bond angle was again very small (91.5°) in the singlet, with virtually all of the s-orbital used for the lone pair. Again in the carbon molecules, the singlet state of HCBH_{2} was found to be $37.8 \mathrm{kcal} / \mathrm{mol}$ above the lowest energy structure, and the HOMO, rather than being a lone pair on carbon, is a π-bond.
The ground state of the molecules with the composition HSiB was the ${ }^{3} \Sigma^{-}$state of HBSi with each π-orbital containing a single electron. This again allowed the silicon atom to have a lone pair of electrons in an orbital with a large percentage of s-character. Silaethylene is found to be virtually degenerate with singlet methylsilylene, where the $\mathrm{H}-\mathrm{Si}-\mathrm{C}$ bond angle also was small $\left(95.8^{\circ}\right)$. The ${ }^{1} \mathrm{~A}^{\prime}$ state of $\mathrm{H}_{3} \mathrm{SiSiH}$ is $10.3 \mathrm{kcal} / \mathrm{mol}$ more stable than the ${ }^{3} \mathrm{~A}^{\prime \prime}$ structure and is only $6.2 \mathrm{kcal} /$ mol higher than the $\mathrm{Si}_{2} \mathrm{H}_{4}$ ground state, disilylene.
The ${ }^{1} \mathrm{~A}_{1}$ state of $\mathrm{H}_{2} \mathrm{CSi}, 61.1 \mathrm{kcal} / \mathrm{mol}$ more stable than the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state of silaethyne, again is characterized by a lone pair of electrons on silicon. The $\mathrm{H}-\mathrm{Si}-\mathrm{C}$ angle in the triplet state was only 95.8°, as opposed to 118.0° in the triplet silylene, implying

[^12]Table III. Stabilization Energies (kcal/mol) for Singlet and Triplet Silylenes XSiH and Carbenes XCH

	silylenes			carbenes	
substituent, X	singlet a	triplet b		singlet c	triplet $^{\boldsymbol{d}}$
H	0.0	0.0	0.0	0.0	
Li	-1.2	25.2	9.2	27.0	
BeH	-1.8	23.7	-1.6	18.5	
BH_{2}	7.8	16.1	36.8	15.6	
CH_{3}	0.7	-2.7	12.0	5.4	
NH_{2}	22.3	-1.6	61.5	13.0	
OH^{2}	15.0	-6.7	51.2	11.0	
F	9.3	-12.0	35.0	5.5	

${ }^{a}$ Equation 1. ${ }^{b}$ Equation 2. ${ }^{c}$ Equation 3. ${ }^{d}$ Equation 4.
that more of the s-orbital is used for the SOMO on the silicon atom. The unusual structure for the ground state of the $\mathrm{H}_{2} \mathrm{Si}_{2}$ molecule, 16, allows nonbonding electrons to reside on each silicon atom. Conversely, in $\mathrm{H}_{2} \mathrm{C}_{2}$, carbon uses the available valence electrons to form π-bonds, yielding the classical acetylene structure. The ${ }^{1} \mathrm{~A}_{1}$ state of $\mathrm{H}_{2} \mathrm{SiSi}$ has a pair of nonbonding electrons on the terminal silicon and is only $6.2 \mathrm{kcal} / \mathrm{mol}$ above $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$. No other stable structures were located on the singlet potential energy surface.

The planar ${ }^{1} \mathrm{~A}^{\prime}$ ground state of HSiNH_{2}, with nonbonding electrons on silicon and a small $\mathrm{H}-\mathrm{Si}-\mathrm{N}$ bond angle (95.9°), is $20.2 \mathrm{kcal} / \mathrm{mol}$ more stable than the ${ }^{1} \mathrm{~A}^{\prime}$ state of $\mathrm{H}_{2} \mathrm{SiNH}$, which has nonbonding electrons on nitrogen. Conversely, the ${ }^{1} \mathrm{~A}^{\prime}$ state of HCNH_{2} is $39.9 \mathrm{kcal} / \mathrm{mol}$ higher than the $\mathrm{H}_{2} \mathrm{CNH}$ isomer. Another example is provided by the ${ }^{1} \Sigma^{+}$ground states of HAB systems. HCN is found to be $16.8 \mathrm{kcal} / \mathrm{mol}$ more stable than HNC, whereas HNSi, with a lone pair on silicon, is $55.0 \mathrm{kcal} / \mathrm{mol}$ more stable than HSiN with a lone pair on nitrogen. The ${ }^{2} \Pi$ state of SiN has a lone pair of electrons on silicon and is $31.7 \mathrm{kcal} / \mathrm{mol}$ more stable than the ${ }^{2} \Sigma^{+}$state, which only has a single nonbonding electron on silicon. ${ }^{23}$ Conversely, the ${ }^{2} \Sigma^{+}$state of CN is calculated to be $11.4 \mathrm{kcal} / \mathrm{mol}$ more stable than the ${ }^{2} \Pi$ state. ${ }^{23}$

The ${ }^{1} \mathrm{~A}^{\prime}$ state of trans-hydroxysilylene and the ${ }^{1} \mathrm{~A}_{1}$ state of $\mathrm{H}_{2} \mathrm{SiO}$ are virtually degenerate, whereas trans-hydroxymethylene is $57.9 \mathrm{kcal} / \mathrm{mol}$ less stable than formaldehyde. Finally, the presence of a pair of nonbonding electrons on silicon could be a factor favoring the cyclic form of SiO_{2} relative to the cyclic CO_{2} analogue.

While the energy of an electron in a silicon molecule is decreased when it is delocalized, as in forming a π-bond, the energy also is decreased when the electron is in a silicon atomic orbital with a high percentage of s-character. These two effects stabilize different structural types; for this reason the energy separation between different silicon containing isomers is generally much less than between the related carbon analogues.

Substituted Silylenes and Methylenes. The chemistry of the divalent silylenes, the silicon analogues of carbenes, is of much current interest, ${ }^{55.115,116}$ but most investigations have been confined to alkyl, aryl, or halogen substituents. ${ }^{117}$ With the exception of matrix isolation studies of HSiOH^{101} and $\mathrm{HSiF},{ }^{112 a}$ very little is known experimentally about other silylenes. Most of the theoretical calculations have also concentrated on $\mathrm{H}_{2} \mathrm{Si}, \mathrm{CH}_{3} \mathrm{SiH}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si} .{ }^{49.118}$ In contrast, the isovalent substituted carbenes

[^13]have been examined previously in much greater detail. ${ }^{116}$ Our results, summarized in Tables I and II, allow a systematic comparison of a series of substituted silylenes with the corresponding carbenes for the first time.

The effect of substituents, X , on the stabilities of the singlet and triplet silylenes can be evaluated by the isodesmic bond separation equations, (1) and (2). The results are compared in Table III with the stabilization energies for the corresponding carbenes (eq 3 and 4). While most of the substituents stabilize

$$
\begin{align*}
& \mathrm{XSiH} \text { (singlet) }+\mathrm{SiH}_{4} \rightarrow \mathrm{H}_{3} \mathrm{SiX}+\mathrm{H}_{2} \mathrm{Si} \text { (singlet) } \tag{1}\\
& \mathrm{XSiH} \text { (triplet) }+\mathrm{SiH}_{4} \rightarrow \mathrm{H}_{3} \mathrm{SiX}+\mathrm{H}_{2} \mathrm{Si} \text { (triplet) } \tag{2}\\
& \mathrm{XCH} \text { (singlet) }+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{3} \mathrm{CX}+\mathrm{H}_{2} \mathrm{C} \text { (singlet) } \tag{3}\\
& \mathrm{XCH} \text { (triplet) }+\mathrm{CH}_{4} \rightarrow \mathrm{H}_{3} \mathrm{CX}+\mathrm{H}_{2} \mathrm{C} \text { (triplet) } \tag{4}
\end{align*}
$$

the singlet state of the silylenes, Li and BeH are slightly destabilizing and methyl has little effect $(0.7 \mathrm{kcal} / \mathrm{mol})$. The influence of BH_{2} is moderate ($7.8 \mathrm{kcal} / \mathrm{mol}$), but the most effective stabilization is achieved with π-donors and decreases along the series $\mathrm{NH}_{2}(22.3 \mathrm{kcal} / \mathrm{mol})>\mathrm{OH}(15.0 \mathrm{kcal} / \mathrm{mol})>\mathrm{F}(9.3 \mathrm{kcal} / \mathrm{mol})$ with the π-donating ability. The importance of the resonance form $\mathbf{M}=\mathrm{Si}(\mathbf{2 5 b})$ for these substituents is indicated by the significant

charge that is transferred into the 3 p-orbital of the silylene (the populations are: $\mathrm{NH}_{2}(0.215), \mathrm{OH}(0.143)$, and $\mathrm{F}(0.094)$) and by the shortening of the silylene $\mathrm{Si}-\mathrm{X}$ bond relative to the saturated silyl structure ${ }^{2}$ (e.g., the $\mathrm{Si}-\mathrm{N}$ bond length in HSiNH_{2} is 1.531 \AA compared with $1.710 \AA$ in $\mathrm{H}_{3} \mathrm{SiNH}_{2}$ at $3-21 \mathrm{G}^{(*)}$).

The singlet carbenes behave similarly, ${ }^{117}$ but the stabilization energies are usually much greater than for the corresponding silylenes (Table III). ${ }^{118}$ For example, the largest stabilizing effects (for an amino group) are $61.5 \mathrm{kcal} / \mathrm{mol}$ in the carbene and 22.3 $\mathrm{kcal} / \mathrm{mol}$ in the silylene. The reduction in substituent effects in the silylenes results mainly from the lower tendency of silicon to form π-bonds. This is attributable to the higher energy of the $3 p(S i)$ acceptor orbital in silylene compared to the $2 p(C)$ orbital in carbene and also to the longer $\mathrm{Si}-\mathrm{X}$ bonds relative to $\mathrm{C}-\mathrm{X}$ bonds. Both factors reduce the interaction with the lone pair on X and thus the stabilization. A similarly reduced substituent effect was found in comparing silicenium ions ($\mathrm{R}_{3} \mathrm{Si}^{+}$) with carbenium ions $\left(\mathrm{R}_{3} \mathrm{C}^{+}\right) .{ }^{119}$ The lower tendency of silicon to form π-bonds also contributes to the lower stabilization of singlet silylenes compared with carbenes by π-acceptor substituents. For example, BH_{2} stabilizes singlet methylene significantly ($36.8 \mathrm{kcal} / \mathrm{mol}$) due to contributions from the resonance structure $\mathrm{M}=\mathrm{B}(\mathbf{2 6 b})$. This

260

26 ${ }_{\sim}^{b}$
contribution is not nearly as important for the BH_{2} substituted silylene, and the stabilization is much smaller ($7.8 \mathrm{kcal} / \mathrm{mol}$).

The substituent effects in the triplet silylenes are very different from those in the singlets. The triplet stabilization energies correlate roughly with the electronegativity of X and increase as the electronegativity of the substituent decreases. $\mathrm{Li}, \mathrm{BeH}$, and BH_{2} are highly stabilizing while OH and F substitutions destabilize the triplet state significantly. Three-electron π-interactions between the lone pair on X and the one electron in the $3 \mathrm{p}(\mathrm{Si})$ orbital of the silylene appear to be unimportant. Even $\mathbf{N H}_{2}$, the most potent π-donor, is slightly destabilizing. On the other hand, all

[^14]Table IV. Relative Energies (RE) of the Lowest Lying Singlet and Triplet States of Divalent Silicon Molecules, HSiX, Along with the $\mathrm{Si}-\mathrm{X}$ Bond Length and $\mathrm{H}-\mathrm{Si}-\mathrm{X}$ Bond Angle

molecule	sym	state	$\mathrm{Si}-\mathrm{X}^{a}$	$\mathrm{H}-\mathrm{Si}-\mathrm{X}^{b}$	RE^{c}
HSiH	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	1.506	93.4	0.0
	$C_{2 v}$	${ }^{3} \mathrm{~B}_{1}$	1.471	118.0	16.4
HSiLi	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	2.635	94.4	9.7
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	2.406	140.5	0.0
HSiBeH	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	2.257	94.2	9.4
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	2.128	128.6	0.0
HSiBH_{2}	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.994	91.5	0.0
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	1.961	123.1	8.8
HSiCH_{3}	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.907	95.8	0.0
	C_{s}	${ }_{3} \mathrm{~A}^{\prime \prime}$	1.899	118.6	19.8
HSiNH_{2}	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.698	95.9	0.0
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	1.710	120.7	40.3
HSiOH	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.638	97.1	0.0
	C_{1}	${ }^{3} \mathrm{~A}^{\prime}$	1.645	118.5	38.0
HSiF	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.596	98.3	0.0
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	1.602	116.0	37.8

${ }^{a}$ Bond lengths are in angstroms. ${ }^{b}$ Bond angles are in degrees. ${ }^{c}$ Taken from Table I and ref 2 ; in $\mathrm{kcal} / \mathrm{mol}$.
substituents stabilize the triplet carbenes. The three-electron, $2 p$ (C) $-2 \mathrm{p}(\mathrm{X}), \pi$-conjugation ($\mathbf{2 5 b}, \mathrm{M}=\mathrm{C}$) is effective, although σ-donors (e.g., Li and BeH) are more stabilizing than π-donors. In conclusion, π-conjugation is more important in the triplet carbenes, but substituent electronegativities dominate with the triplet silylenes.

Silicon tends to have nonbonding electrons in atomic orbitals with high s-character. Electropositive substituents transfer charge from the $\mathrm{Si}-\mathrm{X}$ bonding orbital with much p-character to the partially populated s-type orbital on silicon. With electronegative substituents the effect is reversed; charge is transfered from the s-type orbital on silicon to the $\mathrm{Si}-\mathrm{X}$ bond. In the singlet silylenes, the s-type orbital on silicon is doubly occupied, and charge donation by electropositive substituents is less favorable.

In the carbenes, the $C-X$ bonding and the carbon lone-pair orbitals both have sp^{2}-character, and electron transfer from one orbital to the other is not as important. Note, however, that the overall stabilization of triplet silylene and triplet carbene by Li , BeH , and BH_{2} groups is similar. The lower σ-inductive stabilization in the carbene series is compensated by additional stabilization due to π-conjugation (as in $\mathbf{2 5 b}, \mathbf{M}=\mathrm{C}$), involving one electron.

Singlet-Triplet (S-T) Energy Differences. Singlet $\mathrm{H}_{2} \mathrm{Si}$ is calculated to be more stable than the triplet ${ }^{3} \mathrm{~B}_{1}$ state by 16.4 $\mathrm{kcal} / \mathrm{mol}$ at MP4/6-31G*.2 This result is in agreement with other calculations, ${ }^{112 c, 118}$ but somewhat higher than an upper bound of $14 \mathrm{kcal} / \mathrm{mol}$ reported by Lineberger and co-workers. ${ }^{120}$ For CH_{2}, the ${ }^{3} \mathrm{~B}_{1}$ triplet is calculated to be $16.8 \mathrm{kcal} / \mathrm{mol}$ lower than the ${ }^{1} A_{1}$ singlet at MP4/6-31G*. ${ }^{2}$ This S-T separation is overestimated, recent experimental results place it at about $9 \mathrm{kcal} / \mathrm{mol},{ }^{121}$ and our best theoretical estimate is $8.2 \mathrm{kcal} / \mathrm{mol}^{2}{ }^{2}$

However, as we are concerned primarily with the effect of substituents on the $S-T$ separation, this deficiency at MP4/6-31G* is not expected to alter the conclusions. The reason for the reversed spin preference in CH_{2} and SiH_{2} and a detailed discussion of their structures are presented elsewhere. ${ }^{2}$ Table IV lists the calculated energy differences between the lowest energy singlet and triplet silylenes, along with the $\mathrm{Si}-\mathrm{X}$ bond lengths and the $\mathrm{H}-\mathrm{Si}-\mathrm{X}$ bond angles. Similar data for the carbon analogues are given in Table V. The $S-T$ energy differences in Tables IV and V are determined by the S-T gaps in the parent divalent molecules and by the effects (discussed above) of the various substituents on the stabilities of the two states (Table III).

In the silylene series there is a continual increase in the stabilization of the singlet relative to the triplet as the electronegativity
(120) A. Kasdan, E. Herbst, and W. C. Lineberger, J. Chem. Phys., 62, 541 (1975).
(121) W. T. Borden and E. Davidson, Ann. Rev. Phys. Chem., 30, 125 (1979).

Table V. Relative Energies of the Lowest Lying Singlet and Triplet States of Divalent Carbon Molecules, HCX, Along with the C-X Bond Length and $\mathrm{H}-\mathrm{C}-\mathrm{X}$ Bond Angle

molecule	sym	state	$\mathrm{C}-\mathrm{X}^{a}$	$\mathrm{H}-\mathrm{C}-\mathrm{X}^{b}$	RE^{c}
HCH	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	1.102	104.7	16.8
	$C_{2 v}$	${ }^{3} \mathrm{~B}_{1}$	1.071	131.0	0.0
HCLi	$C_{\infty v}$	${ }^{1} \Delta$	1.875	180.0	34.7
	$C_{\infty v}$	${ }^{3} \Sigma^{-}$	1.893	180.0	0.0
HCBeH	$C_{\infty v}$	${ }^{1} \Delta$	1.631	180.0	37.3
	$C_{\infty v}$	${ }^{3} \Sigma^{-}$	1.642	180.0	0.0
HCBH_{2}	$C_{2 v}$	${ }^{1} \mathrm{~A}_{1}$	1.401	180.0	0.0
	C_{s}	${ }^{3} \mathrm{~A}^{\prime}$	1.523	141.1	4.3
HCCH_{3}	C_{1}	${ }^{1} \mathrm{~A}_{1}$	1.508	107.4	10.7
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	1.495	130.9	0.0
HCNH_{2}	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.322	107.4	0.0
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	1.385	126.8	31.7
HCOH	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.335	103.1	0.0
	C_{1}	${ }^{3} \mathrm{~A}^{\prime}$	1.370	124.7	23.3
HCF	C_{s}	${ }^{1} \mathrm{~A}^{\prime}$	1.339	103.1	0.0
	C_{s}	${ }^{3} \mathrm{~A}^{\prime \prime}$	1.349	122.6	12.9

${ }^{a}$ Bond lengths are in angstroms. ${ }^{b}$ Bond angles are in degrees ${ }^{c}$ Taken from Table I and ref 2 ; in $\mathrm{kcal} / \mathrm{mol}$.

Table VI. Comparison of Carbon and Silicon Multiple Bond Energies, Reactions 5 and 6

reaction	$\Delta H_{\mathrm{rxn}}{ }^{\text {a }}$
$\mathrm{H}_{2} \mathrm{CBH}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{SiH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SiBH}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{CH}_{2}$	67.0
$\mathrm{H}_{2} \mathrm{CCH}_{2}\left({ }^{1} \mathrm{~A}_{g}\right)+\mathrm{SiH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SiCH}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{CH}_{2}$	59.6
$\mathrm{H}_{2} \mathrm{CSiH}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{SiH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SiSiH}_{2}\left({ }^{1} \mathrm{~A}_{\mathrm{g}}\right)+\mathrm{CH}_{2}$	45.5
$\mathrm{H}_{2} \mathrm{CNH}\left({ }^{1} \mathrm{~A}^{\prime}\right)+\mathrm{SiH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SiNH}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{CH}_{2}$	53.9
$\mathrm{H}_{2} \mathrm{CO}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{SiH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SiO}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{CH}_{2}$	33.1
$\mathrm{HCN}\left({ }^{1} \Sigma^{+}\right)+\mathrm{SiH} \rightarrow \mathrm{HSiN}\left({ }^{1} \Sigma^{+}\right)+\mathrm{CH}$	133.1
$\mathrm{HCCH}\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)+\mathrm{SiH} \rightarrow \mathrm{HSiCH}+\mathrm{CH}$	130.5^{6}

${ }^{a}$ Heats of reaction are in $\mathrm{kcal} / \mathrm{mol}$ and are calculated from the MP4SDTQ/6-31G* energies, corrected for zero-point energy differences, taken from Tables I and II and ref 2. ${ }^{b}$ For this reaction, HSiCH is assumed linear, and since this is not a stable structure, no zeropoint corrections were used.
of the atom bound to silicon increases. This result is in agreement with the qualitative predictions made previously by Harrison et al. ${ }^{116 b}$ The $\mathrm{S}-\mathrm{T}$ separation is largest in HSiNH_{2} and decreases slightly in HSiOH and HSiF . Electropositive substituents, on the other hand, stabilize the triplet silylene more effectively than the singlet. For example, the $\mathrm{S}-\mathrm{T}$ gap in $\mathrm{H}_{2} \mathrm{BSiH}$ is smaller than in $\mathrm{H}_{2} \mathrm{Si}$. HSiLi and HSiBeH are predicted to have triplet ground states. ${ }^{116 e}$ A similar pattern is found for the carbenes (Table V) and agrees with previous conclusions. ${ }^{116}$ The triplet is the ground state for $\mathrm{HCLi}, \mathrm{HCBeH}$, and HCCH_{3}, but $\mathrm{HCNH}_{2}, \mathrm{HCOH}$, and HCF prefer singlet ground states. The HCBH_{2} singlet state is found to be slightly more stable than the triplet. Both electrons on carbon in the singlet are stabilized by delocalization into the vacant p-orbital on boron; in the triplet, only one electron resides in a similar π-orbital. ${ }^{116 c}$ Finally, due to the effective stabilization of the singlet CH_{2} by π-donors, the decrease in the S - T separation along the series $\mathrm{HCNH}_{2}, \mathrm{HCOH}$, and HCF is greater than in the corresponding silicon analogues.

Comparison of Carbon and Silicon Multiple Bond Energies. Prior experimental experience and theoretical investigations have shown that multiple bonds involving silicon are considerably weaker than corresponding carbon linkages. Some quantitative estimates are available, but these have been evaluated somewhat differently. ${ }^{114}$ A simple procedure is to compare carbon and silicon multiple bonds directly by means of eq 5 and 6 . Equation 5 is the formal replacement of a CH_{2} group by SiH_{2} in a double bond system. The values in Table VI have been determined by using the energy of triplet $\mathrm{CH}_{2}\left({ }^{3} \mathrm{~B}_{1}\right)$; at the level of theory employed, this form is $16.8 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the ${ }^{1} \mathrm{~A}_{1}$ structure. The overestimation from the experimental difference introduces only a small error. The data in Table VI reveal all $\mathrm{C}=\mathrm{X}$ double

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{C}=\mathrm{XH}_{n}+\mathrm{SiH}_{2}\left({ }^{1} \mathrm{~A}_{1}\right) & \rightarrow \mathrm{H}_{2} \mathrm{Si}=\mathrm{XH}_{n}+\mathrm{CH}_{2}\left({ }^{3} \mathrm{~B}_{1}\right) \\
\mathrm{HC}-\mathrm{XH}_{n}+\mathrm{SiH}\left({ }^{2} \Pi\right) & \rightarrow \mathrm{HSi}-\mathrm{XH}_{n}+\mathrm{CH}\left({ }^{2} \Pi\right) \tag{6}
\end{align*}
$$

bonds to be more stable than their $\mathrm{Si}=\mathrm{X}$ counterparts. However, the energy differences decrease with the increasing electronegativity of X , reaching their smallest value at $\mathrm{X}=\mathrm{O}$. The $\mathrm{C}=\mathrm{C}$ double bond is $105.1 \mathrm{kcal} / \mathrm{mol}$ more stable than the $\mathrm{Si}=$ Si linkage.

Because other states and geometries are favored, the only straightforward triple bond comparison (eq 6) is with nitrogen $(\mathrm{X}=\mathrm{N})$. The $\mathrm{C}-\mathrm{N}$ triple bond is $133.1 \mathrm{kcal} / \mathrm{mol}$ more stable than its $\mathrm{Si}-\mathrm{N}$ analogue. Although linear HSiCH is not a minimum, its energy can be used to evaluate the energy of eq 6 vs. acetylene. On this basis, the $\mathrm{Si} \equiv \mathrm{C}$ triple bond is also about $130 \mathrm{kcal} / \mathrm{mol}$ less stable than the $\mathrm{C} \equiv \mathrm{C}$ triple bond.

Basis Set Comparison. In saturated silyl molecules, the addition of d-functions to the second-row atoms resulted in only slight decreases in the bond lengths and atomic charges. ${ }^{2}$ For unsaturated molecules, the inclusion of d-functions caused greater changes in the bond lengths, and in four cases different structures resulted. In HSiB , a stable (no imaginary frequencies) ${ }^{1} \mathrm{~A}^{\prime}$ state with a very small bond angle (82.4°) was obtained with the 3-21G basis set. When d-functions were added to silicon ($3-21 \mathrm{G}^{(*)}$ basis) and the calculation resumed, this state converted to the ${ }^{1} \Delta$ state of HBSi . This suggests that the ${ }^{1} \mathrm{~A}^{\prime}$ state is an artifact of the smaller basis and does not exist. In the $\mathrm{H}_{2} \mathrm{SiSiH}_{2}$ ground state, the 3-21G optimized structure was nonplanar $\left(C_{2 h}\right)$. With the 3-21G ${ }^{(*)}$ basis, a planar ($D_{2 h}$) structure was obtained. $\mathrm{H}_{2} \mathrm{Si}_{2}$ at $\mathrm{HF} / 3-21 \mathrm{G}$ had a twisted $\mathrm{HSiSiH}^{1} \mathrm{~A}$ ground state; the $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$ isomer with the hydrogens bridging the silicon atoms was calculated to be $0.4 \mathrm{kcal} / \mathrm{mol}$ higher in energy, neglecting zero-point corrections. With d-functions, the HSiSiH form collapsed to $\mathrm{Si}\left(\mathrm{H}_{2}\right) \mathrm{Si}$ with no activation barrier. At 3-21G, singlet $\mathrm{H}_{2} \mathrm{SiNH}$ preferred a planar C_{s} structure with a $\mathrm{Si}-\mathrm{N}-\mathrm{H}$ bond angle of 132.8°; the $3-21 \mathrm{G}^{(*)}$ basis gave a $C_{2 v}$ structure with a linear arrangement about the nitrogen.

In all silicon first-row saturated molecules, ${ }^{2}$ the addition of d-functions to the silicon resulted in a decrease in the silicon-heavy-atom bond length. If the first-row atom was either Be, B, C, N, or O , this decrease was between 0.014 and $0.010 \AA$, with the amount of decrease becoming generally larger on moving from beryllium to oxygen. The ${ }^{3} \mathrm{~A}^{\prime \prime}$ states of HSiBeH and $\mathrm{H}_{2} \mathrm{SiBe}$ are exceptional, the addition of d-functions to silicon increased the $\mathrm{Si}-\mathrm{Be}$ bond lengths. In all other cases, a decrease in the bond distance was observed, and this generally is greater in magnitude than that for the saturated molecules. ${ }^{2}$ Particularly large decreases are found for the ${ }^{1} \mathrm{~A}^{\prime}$ state of $\mathrm{H}_{2} \mathrm{SiNH}(0.080 \AA)$, the ${ }^{2} \Pi$ states of $\mathrm{SiN}(0.090$ and $0.077 \AA$ for the states with three and five π-electrons, respectively), the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state of $\mathrm{H}_{2} \mathrm{SiO}(0.078 \AA)$, and for many of the molecules containing two silicon atoms. In the few cases where experimental structures are available, the $\mathrm{HF} / 3-21 \mathrm{G}^{(*)}$ optimized geometries are in better agreement than are the $\mathrm{HF} / 3-21 \mathrm{G}$ results.

Conclusion. The structural differences in saturated silyl and methyl compounds are minimal. ${ }^{2}$ At the same ab initio level there are often large differences between unsaturated carbon and silicon molecules, both in the ground-state geometries and in the energy separations between various states. The ground state of most of the silicon species has one or more nonbonding electrons on silicon. For the carbon species, forms with π-bonds are favored over those possessing nonbonding electrons.

The energetic separation between various stable species is smaller for most of the silicon molecules than for the carbon analogues. $\mathrm{H}_{2} \mathrm{SiO}$ is a notable example. Two other stable structures are within $5.1 \mathrm{kcal} / \mathrm{mol}$ of the ground state. Such small energy separations preclude the definite assignment of the ground state; further studies are needed for several of the systems studied.

The singlet state of silylene is stabilized by both π-donors and σ-donors. However, π-donors are less effective in stabilizing silylene than singlet carbene. Triplet silylenes are stabilized by electropositive substituents and destabilized by electronegative groups, including π-donors such as hydroxyl. SiH_{2} is a groundstate singlet, and the S-T gap is $16.4 \mathrm{kcal} / \mathrm{mol}$ at MP4/6-31G* . The S-T energy separation in HSiX increases as the electronegativity of \mathbf{X} increases. The S-T gap reaches a maximum separation in $\mathrm{HSiNH}_{2}(40.3 \mathrm{kcal} / \mathrm{mol})$. HSiLi and HSiBeH , on
the other hand, are calculated to have triplet ground states.
The effect of d-functions on silicon is much greater for the unsaturated than for the saturated silicon molecules. ${ }^{2}$ In general, much greater decreases in the silicon bond distances are found in the unsaturated molecules when d-functions are added.

Acknowledgment. Y. A. thanks Professor R. West for stimu-
lating discussions. This work was supported in part by the $\mathrm{Na}-$ tional Science Foundation (Grant CHE-81-01061-01), the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft, and was facilitated by an award (to J.A.P.) of the Alexander von Humboldt Foundation. Research at the Technion was supported by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Enantiocontrolled Cycloaddition Approach to (+)-Brefeldin A

Barry M. Trost,* Joseph Lynch, Patrice Renaut, and Douglas H. Steinman
Contribution from the McElvain Laboratories of Organic Chemistry, Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706. Received March 26, 1985.
Revised Manuscript Received September 23, 1985

Abstract

The concept of a cycloaddition to form five-membered rings allows a retrosynthetic analysis of the antifungal, antiviral, and antitumor agent $(+)$-brefeldin A that resolves the problem of relative and absolute stereochemistry. The acetonide of D-glyceraldehyde which provides $\mathrm{C}-4$ of the target transmits its stereochemistry ultimately to $\mathrm{C}-5,-7$, and -9 via a Pd-catalyzed cycloaddition as the key step to form the five-membered ring unit. The last chiral center at $\mathrm{C}-15$ is established by using a microbiological reduction of 1-phenylsulfonyl-5-hexanone with a relatively unknown microorganism C. guillermonde. Julia olefination attaches the derived hexanol unit which constitutes the lower side chain to the cyclopentyl unit. Alkylative elimination using the dianion of phenylthioacetic acid introduces the acrylate unit and completes the synthesis of the optically pure natural product.

While the Diels-Alder reaction enjoys unparallel prominence in the formation of six-membered rings for the synthesis of complex natural products, cycloaddition strategy for forming five-membered ring carbocyclic natural products is virtually unknown. The opportunities for selectivity embodied in such a strategy based upon a Pd-catalyzed cycloaddition ${ }^{1}$ are revealed in analyzing an approach to $(+)$-brefeldin $\mathbf{A (1)}$, a significant target because of its antifungal, antimitotic, antiviral, and antitumor activities. ${ }^{2,3}$ This 16 -membered macrolide antibiotic, also known as cyanein, ${ }^{4}$ decumbin, ${ }^{5}$ and ascotoxin, bears a structural resemblance to the prostaglandins. Studies on the biosynthesis of 1, however, strongly suggest that cyclopentanol formation in $\mathbf{1}$ does not parallel prostaglandin biosynthesis. ${ }^{7}$

The synthesis ${ }^{8}$ of racemic brefeldin A was first reported by Corey and Wollenberg ${ }^{9}$ and subsequently by others. ${ }^{8}$ Natural

[^15]$(+)$-brefeldin A has been prepared by a rather long route from D-mannitol and D -glutamic acid ${ }^{10}$ and also more efficiently from an optically active Diels-Alder adduct. ${ }^{11}$ Studies directed toward a possibly biomimetic synthesis have also been recently reported. ${ }^{12}$

Previous syntheses of 1 (with one exception ${ }^{18}$) have relied on one of two methods for obtaining the cyclopentanol ring with the correct stereochemistry: one uses trans cyclopentanone-3,4-dicarboxylic acid as the starting material; the other uses conjugate addition of an organometallic reagent to a 4 -substituted cyclopentenone, giving 3,4 -trans substituents.

The approach to $(+)$-brefeldin A described herein is unique in that the absolute configuration at carbons 4,5 , and 9 (brefeldin numbering) is controlled by the method by which the cyclopentyl ring is constructed.

Scheme I outlines a retrosynthetic analysis. As in almost all previous syntheses, ${ }^{8}$ the seco acid 2 was envisioned as the immediate precursor. The concept of alkylative elimination (eq 1) $)^{13.14}$ allows dissection of the upper side chain between $\mathrm{C}(2)$ and $\mathrm{C}(3)$ of $\mathbf{3}$ and requires a leaving group at pro-C-3 as exemplified by the epoxide in 4. Obviously, any vicinal oxygen substitution such as in $\mathbf{5}$ is easily convertible into an epoxide. At this point, attention turned to the lower side chain which nicely draws upon the Julia olefination ${ }^{15}$ which has been shown to be capable of generating (E)-olefins with excellent geometrical control. ${ }^{16}$ The availability of the requisite β-hydroxy sulfone 6 via the β-keto sulfone 7 suggested acylation of a sulfone-stabilizing anion with the ester

[^16]
[^0]: (1) (a) Pittsburgh. (b) New York. (c) Haifa. (d) Erlangen.
 (2) B. T. Luke, J. A. Pople, M.-B. Krogh-Jespersen, Y. Apeloig, J. Chandrasekhar, and P. v. R. Schleyer, J. Am. Chem. Soc., preceding paper in this issue.
 (3) L. E. Gusel'nikov and N. S. Nametkin, Chem. Rev., 79, 529 (1979). B. Coleman and M. Jones, Jr., Rev. Chem. Intermed., 4, 297 (1981).
 (4) M. S. Gordon, J. Am. Chem. Soc., 104, 4352 (1982), and references therein. A. G. Brook, S, C. Nyburg, F. Abdesaken, B. Gutekunst, G. Gutekunst, R. K. M. R. Kallury, Y. C. Poon, Y.-M. Cheng, and W. Wong-Ng, J. Am. Chem. Soc., 104, 5667 (1982).
 (5) Review: P. P. Gaspar in M. Jones, Jr. and R. A. Moss, Ed., "Reactive Intermediates", Vol. 2, Wiley-Interscience, New York, 1981, Chapter 9. M. J. Fink, M. J. Michalszyk, K. J. Haller, R. West, and J. Michl, J. Chem. Soc., Chem. Commun. 1010 (1983). A. Cowley and N. C. Norman, in press. S. Masomme, S. Murakomi, J. T. Snow, H. Tobita, and D. J. Williams, Organometallics, 3, 333 (1984). S. Murakami, S. Collins, and S. Masamune, Tetrahedron Lett., 2131 (1984). H. Matsumoto, T. Arai, H. Watanabe, and Y. Nagai, J. Chem. Soc., Chem. Commun., 724 (1984). M. J. Fink, J. Michaelczyk, K. J. Haller, R. West, and J. Michl, Organometallics, 3, 793 (1984).
 (6) I. M. T. Davidson and J. F. Thompson, J. Chem. Soc., Chem. Commun., 251 (1971). H. S. D. Soyso, H. Okuroshina, and W. P. Weber, J. Organomet. Chem. 133, C17 (1977). Also see ref 54c.
 (7) C. M. Golino, R. D. Busch, and L. H. Sommer, J. Am. Chem. Soc., 97, 7371 (1975). R. Withall and L. Andrews, J. Am. Chem. Soc., 107, 2567 (1985).
 (8) J. Simpson, in D. B. Sowerby, Ed., "Inorganic Chemistry Series Two, Vol. 2, Main Group Elements Group IV and V", Butterworth, London, 1975. L. C. Snyder and K. Raghavachari, J. Chem. Phys. 80, 5076 (1984).
 (9) F. J. Lovas, Astrophys. J., 193, 265 (1974). For $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{Si}$, see: H. Bock, and R. Dammel, Angew. Chem., Int. Ed. Engl., 24, 111 (1985).

[^1]: (10) K. Raghavachari, M. J. Frisch, J. A. Pople, and P. v. R. Schleyer, Chem. Phys. Lett., 85, 145 (1982).
 (11) H. F. Schaefer III, Acc. Chem. Res., 12, 288 (1979).
 (12) M. S. Gordon, Chem. Phys. Lett., 54, 9 (1978); also see below; ref 45-55.
 (13) J. A. Pople, K. Raghavachari, M. J. Frisch, and P. v. R. Schleyer, J. Am. Chem. Soc. 105, 6389 (1983).
 (14) (a) J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980); (b) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, Ibid., 103, 2797 (1981).
 (15) W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople, and J. S. Binkley, J. Am. Chem. Soc., 104, 5039 (1982).

[^2]: (20) (a) R. Krishnan and J. A. Pople, Int. J. Quantum Chem., 14, 91 (1978); (b) R. Krishnan, M. J. Frisch, and J. A. Pople, J. Chem. Phys., 72, 4244 (1980)
 (21) (a) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 28, 213 (1973); (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys., 77, 3654 (1982).

[^3]: (22) J. S. Binkley, M. J. Frisch, D. J. DeFrees, K. Raghavachari, R. A Whiteside, H. B. Schlegel, G. Flueter, and J. A. Pople, Carnegie-Mellon Chemistry Publication Unit, Pittsburgh, PA, 1983.
 (23) R. A. Whiteside, M. J. Frisch, and J. A. Pople, Eds., Carnegie-Mellon Quantum Chemistry Archive, Third Edition, 1983, Carnegie-Mellon Univ-

[^4]: (25) S. M. Freund, P. D. Godfrey, and W. Klemperer, Twenty-Fifth Symposium on Molecular Structure and Spectroscopy, The Ohio State University, Columbus, OH, Sept 1970. M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Severud, and L. L. Walker, J. Phys. Chem. Ref. Data, 3, 311 (1974) (JANAF Supplement 4).
 (26) E.-U. Würthwein, K. D. Sen, J. A. Pople, and P. v. R. Schleyer, Inorg. Chem. 22, 496 (1983).
 (27) J. D. Dill, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, J. Am. Chem. Soc., 99, 6159 (1977).
 (28) U. Lamanna and M. Maestro, Theor. Chim. Acta, 36, 103 (1974). (29) J. S. Binkley, R. Seeger, J. A. Pople, J. D. Dill, and P. v. R. Schleyer, Theor. Chim. Acta, 45, 69 (1977).
 (30) B. T. Luke, J. A. Pople, and P. v. R. Schleyer, Chem. Phys. Lett., 97, 265 (1983).

[^5]: (34) B. T. Luke, J. A. Pople, and P. v. R. Schleyer, Chem. Phys. Lett, in

[^6]: (56) R. A. Poirier and J. D. Goddard, Chem. Phys. Lett., 80, 37 (1981).
 (57) L. C. Snyder and Z. R. Wasserman, J. Am. Chem. Soc., 101, 5222 (1979).
 (58) H. Lischka and H.-J. Köhler, Chem. Phys. Lett., 85, 467 (1981).
 (59) P. H. Blustin, J. Organomet. Chem., 105, 161 (1976).
 (60) R. Daudel, R. E. Kari, R. A. Poirier, J. D. Goddard, and I. G. Csizmadia, J. Mol. Struct., 50, 115 (1978).
 (61) F. F. Roeland, D. F. van der Vondel, and G. P. van der Kelen, J. Organomet. Chem., 165, 151 (1979).

[^7]: (62) K. Krogh-Jespersen, J. Phys. Chem., 86, 1492 (1982); Chem. Phys Lett., 93, 327 (1982); J. Am. Chem. Soc., 107, 537 (1985).
 (63) Though the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ separation between 11 and 12 is $2.6 \mathrm{kcal} / \mathrm{mol}$ (without zero-point correction), MP4SDTQ/6-3 TG**//HF/6-31G* calculations reduce the separation to only $0.3 \mathrm{kcal} / \mathrm{mol}$, B. T. Luke and J. A. Pople, to be submitted for publication.

[^8]: (80) L. C. Snyder, Z. R. Wasserman, and J. W. Moskowitz, Int. J. Quantum Chem., 21, 565 (1982). L. C. Snyder and L. R. Wasserman, Chem. Phys. Lett. 51, 349 (1977).

[^9]: (97) H. W. Kroto, J. N. Murrell, A. Al-Derzi, and M. F. Guest, Astrophys. J., 219, 886 (1976).
 (98) R. Jaquet, W. Kutzelnigg, and V. Staemmler, Theor. Chim. Acta 54, 205 (1980), and references therein, T. Kudo and S. Nagase, J. Organomet. Chem. 253, C23 (1983). M. S. Gordon and C. George, J. Am. Chem. Soc. 106, 609 (1984). T. Kudo and S. Nagase, J. Phys. Chem. 88, 2833 (1984). S. M. Bachrach and A. Streitwieser, Jr., J. Am. Chem. Soc., 107, 1186 (1985), T. Kudo and S. Nagase, Ibid., 107, 2589 (1985); submitted for publication. (99) A. Kapur, R. P. Steer, and P. G. Mezey, Can. J. Chem., 60, 100 (1982).

[^10]: (101) Z. K. Ismail, R. H. Haige, L. Fredin, J. W. Kauffman, and J. L. Margrave, J. Chem. Phys., 77, 1617 (1982).
 (102) B. G. Gowenlock and L. Radom, Aust. J. Chem., 31, 2349 (1978).
 (103) W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc., 92,4796 (1970).
 (104) K. P. Huber and G. Herzberg, "Spectra of Diatomic Molecules", Van Nostrand, Inc., New York, 1945.
 (105) (a) J. M. Robbe, J. Schamps, H. Lefebvre-Brion, and G. Raseev, J. Mol. Spectrosc., 74, 375 (1979); (b) S. R. Langhoff and J. O. Arnold, J. Chem. Phys., 70, 852 (1979), and references therein.
 (106) C. P. Courtny, Ann. Soc. Sci. Bruxelles, Ser 3, 73, 5 (1959).
 (107) L. Radom, Aust. J. Chem., 31, 1 (1978).

[^11]: (108) D. Feller, J. Katriel, and E. R. Davidson, J. Chem. Phys., 73, 4517 (1980).
 (109) B. T. Luke and J. A. Pople, "Cyclic and Linear CO_{2} and SiO_{2}; Structures, Relative Energies, and Separation Barriers", to be submitted for publication.
 (110) J. Pacansky and K. Hermann, J. Chem. Phys., 69, 963 (1978).
 (111) J. D. Cox, J. Chem. Thermodyn., 10, 903 (1978).

[^12]: (112) (a) Z. K. Ismail, L. Fredin, R. H. Hauge, and J. L. Margrave, J Chem. Phys., 77, 1626 (1982), (b) For more recent results, see: T. Suzuki, K. Hakota, S. Saito, and E. Hirota, J. Chem. Phys., 82, 3580 (1985). (c) M. E. Colvin, R. S. Grev, H. F. Schaefer III, and J. Bicerano, Chem. Phys. Lett., 99, 399 (1983). (d) K. Krogh-Jespersen, J. Am. Chem. Soc., 107, 537 (1985) (e) H. B. Schlegel, J. Phys. Chem., 88, 6254 (1984). (f) C. Sosa and H. B Schlegel, J. Am. Chem. Soc., 106, 5847 (1984)
 (113) W. A. Bingel and W. Luttke, Angew. Chem., Int. Ed. Engl., 20, 899 (1981).
 (114) R. Walsh, Acc. Chem. Res., 14, 246 (1981), and references therein W. Kutzelnigg, Angew. Chem., Int. Ed. Engl., 23, 272 (1984). G. Olbrich, P. Potzinger, B. Reimann, and R. Walsh, Organometallics, 3, 1267 (1984).

[^13]: (115) Y.-N. Tang in R. A. Abramovitch, Ed., "Reactive Intermediates", Vol. 2, Plenum Press, New York, 1982, Chapter 4. P. D. Gaspar, In "Reactive Intermediates", M. Jones, Jr., and R. A. Moss, Eds., Vol. 3, Chapter 9, Wiley, NY, 1985.
 (116) For recent references see: (a) P. H. Mueller, N. G. Rondan, K. N. Houk, J. F. Harrison, D. Hooper, B. H. Willen, and J. F. Liebman, J. Am. Chem. Soc., 103, 5049 (1981), and references therein; (b) J. F. Harrison, R. G. Liedtke, and J. F. Liebman, ibid., 101, 7162 (1979); (c) N. C. Baird and K. F. Taylor, ibid., 100, 1333 (1978); (d) C. W. Bauschilicher Jr., H. F. Schaefer III, and P. S. Bagus, ibid., 99, 7106 (1977); (e) M. E. Coluin, J. Breulet, H. F. Schefer III, Tetrahedron, 41, 1429 (1985); (f) I. Shavitt, Tetrahedron 41, 1531 (1985).
 (117) Our results for the carbenes are generally in good agreement with previous calculations at similar levels of theory. ${ }^{116}$
 (118) (a) B. Wirsam, Chem. Phys. Lett., 14, 214 (1972); (b) J. H. Meadows and H. F. Schaefer III, J. Am. Chem. Soc., 98, 4383 (1976); (c) However, see ref 541 .

[^14]: (119) (a) Y. Apeloig and P. v. R. Schleyer, Tetrahedron Lett., 4647 (1977); (b) Y. Apeloig, S. A. Godleski, D. J. Heacock, and J. M. McKelvey, ibid., 3297 (1981).

[^15]: (1) (a) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315, 2326. (b) Trost, B. M.; Renaut, P. Ibid. 1982, 104, 6668.
 (2) (a) Betina, V. Neoplasma 1969, 16, 23. (b) Bacikova, D.; Betina, V.; Nemec, P. Naturwissenschaften 1964, 51, 445 and earlier references therein. (c) Harri, E.; Loeffler, W.; Sigg, H. P.; Stahelin, H.; Tamm, Ch. Helv. Chim. Acta 1963, 46, 1235. (d) Hayashi, T.; Takatsuki, A.; Tamura, G. J. Antibiot., Ser. A 1974, 27, 65. (e) Suzuki, Y.; Tanaka, H.; Aoki, H.; Tamura, T. Agric. Biol. Chem. 1970, 34, 395.
 (3) First isolation: Singleton, V. L.; Bohonos, N.; Ullstrup, A. J. Nature (London) 1958, 181, 1072. Structure: Weber, H. P.; Hauser, D.; Sigg, H. P. Helv. Chim. Acta 1971, 54, 2753.
 (4) Betina, V.; Fuska, J.; Kjaer, A.; Kutkova, M.; Nemec, P.; Shapiro, R. H. J. Antibiot., Ser. A 1966, l9, 115.
 (5) Singleton, V. L.; Bohonos, N.; Ullstrup, A. J. Nature (London) 1958, 181, 1072.
 (6) (a) BuLock, J. D.; Clay, P. T. Chem. Commun. 1969, 237. (b) Cross, B. E.; Hendly, P. Ibid. 1975, 124.
 (7) (a) Maburi, C. T.; Garlaschelli, L.; Ellison, R. A.; Hutchinson, C. R. J. Am. Chem. Soc. 1979, 101, 707. (b) Hutchinson, C. R.; Kurobane, I.; Cane, D. E.; Hasler, H.; McInnes, A. G. Ibid. 1981, 103, 2477. Hutchinson, C. R.; Kurobrani, I.; Mabuni, C. T.; Kumola, R. W.; McInnes, A. G.; Walter, J. A. Ibid. 1981, 103, 2474. (c) Yamamoto, Y.; Hori, A.; Hutchinson, C. R. J. Am. Chem. Soc. 1985, 107, 2471.
 (8) For most recent syntheses, see: (a) Gais, H. J.; Lied, T. Angew. Chem., Int. Ed. Engl. 1984, 23, 145. (b) Koksal, Y.; Raddatz, P.; Winterfeldt, E. Annalen 1984, 450, 462. (c) Marx, K.-H.; Raddatz, P.; Winterfeldt, E. Ibid. 1984, 474. (d) Kitahara, T.; Mori, K. Tetrahedron 1984, 40, 2935. For references prior to 1984, see citations contained in these publications.
 (9) Corey, E. J.; Wollenberg, R. H. Tetrahedron Lett. 1976, 4705. Corey, E. J.; Wollenberg, R. H.; Williams, D. R. Tetrahedron Lett. 1977, 2243.

[^16]: (10) Kitahara, T.; Mori, K.; Matsui, M. Tetrahedron Lett. 1979, 3021. (11) LeDrian, C.; Greene, A. E. J. Am. Chem. Soc. 1982, 104, 5473. (12) Ohta, T.; Masayuki, S.; Nishimaki, K.; Nozoe, S. Heterocycles 1983, 20, 1567.
 (13) Trost, B. M.; Conway, W. P.; Strege, P. E.; Dietsche, T. J. J. Am. Chem. Soc. 1974, 96, 7165. Trost, B. M.; Bridges, A. J. J. Org. Chem. 1975, 40, 2014.
 (14) Trost, B. M.; Leung, K. K. Tetrahedron Lett. 1975, 4197. Iwai, K.; Kosugi, H.; Uda, H.; Kawai, M. Bull. Chem. Soc. Jpn. 1977, 50, 242.
 (15) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 4833.
 (16) Kocienski, P. J. J. Chem. Soc., Perkin Trans. 1 1978, 829, 834; Chem. Ind. (London) 1981, 548.
 (17) See, for example: Bartlett, P. A.; Green, F. R., III; Rose, E. H. J. Am. Chem. Soc. 1978, 100, 4852.
 (18) Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 1109.

